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概要
標準理論 (Standard Model ,SM) は素粒子物理分野で行われた多くの実験の結果を再現できるもので

あり、信頼された理論となっている。しかしながら SMから予言された理論値と実験値が一致しない事例

も見つかっている。その一つがミューオンの異常磁気能率で、最新の研究では SMの理論値と実験値の間

に 3.7σ のズレがあることが分かっている。このような SMで説明できない事象を説明するために SMを

拡張した (Beyond the Standard Model, BSM)理論が考えられており、また様々な実験によって BSM

の探索が行われている。

BSM理論のうちの一つである最小 U(1)Lµ−Lτ 模型 (Lµ − Lτ 模型)は、BSMの探索実験によって制限

のかかっていない模型のパラメータ領域内でミューオンの異常磁気能率のズレを説明可能であることが先

行研究より示されている。

本研究ではミューオン原子の崩壊過程 (Decay In Orbit,DIO)への µ− τ 模型の寄与を計算し、ミューオ

ン原子を用いた実験による模型の検証可能性について議論した。Lµ −Lτ 模型の存在を仮定すると、DIO

の崩壊幅の計算に必要な束縛ミューオン波動関数を決定するために必要なミューオンと原子核の相互作用

に µ− τ 模型で導入される新しいゲージボソンによって湯川型の補正が生まれる。また相互作用は原子核

の電荷分布を考慮したものでなければならず、本研究では原子核の電荷分布である、Woods-Saxon分布

を用いた µ− τ 模型の補正を定式化した。そして DIOによって出てくる電子のエネルギースペクトラム

への µ− τ 模型の影響を数値計算によって導出し、その影響を観測するために必要なミューオン原子数を

見積もった。

現在 BSMの予言のひとつである荷電レプトンフレーバーの破れ (Charged Lepton Flavor Violation)の

探索実験としてミューオン原子を用いた COMET実験やMu2e実験などが計画されている。これらの実

験では探索のため大量のミューオン原子が生成される。本研究ではこれらの実験で予定されるミューオン

原子の生成数と µ− τ 模型の影響を見るために必要なミューオン原子数を比較することにより、将来実験

によって µ− τ 模型が検証可能か議論した。
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目次 1

序論
標準理論 (Standard Model,SM)は素粒子物理分野で行われた多くの実験の結果を再現してきた。例えば

電子の異常磁気能率に関しては、SMによって計算された理論値 [17]と実験値 [16]の 8桁以上の一致が

確認されている。そのため SMは信頼された理論といえるが、一方で SMから予言された理論値と実験

値が一致しない事例も見つかっている。その一つがミューオンの異常磁気能率であり、最新の研究では

SMの理論値 [24]と実験値 [25]の間に 3.3σ のズレがあることが分かっている。このような SMで説明で

きない事象を説明するために SM を拡張した理論 (Beyond Standard Model,BSM) が考えられており、

また様々な実験によって BSMの探索が行われている。 BSM理論のうちの一つである U(1)Lµ−Lτ
模型

(Lµ−Lτ 模型)[26]は、BSMの探索実験によって制限の掛かっていない模型のパラメータ領域内でミュー

オンの異常磁気能率のズレを説明可能であることが先行研究 [8]により示されている。さらに gµ − 2を説

明可能な領域で宇宙ニュートリノ観測を目的とする IceCube実験 [9][10]におけるニュートリノスペクト

ルの断絶部 (IceCube gap)を説明できる事が先行研究 [7][8]により提唱されている。同じくこの領域にお

いて Hubble定数の遅い時間と早い時間からの推定値のズレ (Hubble tension)を説明することが先行研

究で提唱されている。

本論文ではミューオンの崩壊過程 (Decay In Orbit,DIO)µ− → e− + ν̄e + νµ への Lµ − Lτ 模型の影響

を計算し、その影響を観測するために必要なミューオン原子数を推定した。ミューオン原子は現在計画さ

れている BSM探索実験である COMET実験 [21]やMu2e実験 [23]に使用されている。これらの実験は

SMでは起こらないとされているレプトンフレーバーの破れが起きる µ−N → e−N 過程を観測するもの

であるが、この観測の為に大量のミューオン原子が必要となる。これらの実験のミューオン原子の生成数

と推定したミューオン原子数を比較し実験のシナリオにおいて Lµ − Lτ 模型の影響を見るのに最低限必

要な観測感度を得られるかについて議論する。

　　 DIO過程の計算ではミューオンが電子のパウリの排他律に従わず生成直後に 1S状態に遷移し、ま

たボーア半径が電子の約 200分の 1であるため原子核の電荷分布に影響される。そのためクーロンポテ

ンシャルを計算する際に電荷分布としてWoods-Saxon分布を用いて計算されるがWoods-Saxon分布で

のクーロンポテンシャルの定式化については DIO過程の計算をはじめて行った渡辺ら [27]によって行わ

れている。Lµ − Lτ 模型の存在を仮定するとクーロンポテンシャルに加えて Lµ − Lτ ゲージボソンによ

る湯川型のポテンシャル (Lµ − Lτ ポテンシャル)が生まれる。本研究では渡辺らの定式化の方法と同様

の方法を用いてWoods-Saxon分布での湯川型のポテンシャルの定式化を行った。

　　また Shankerの研究 [28]では原子核の反跳による補正を取り入れて DIOの計算が行われ,2016年に

は放射補正を含めた計算が Szafron,Czarneckiの研究 [29]によってなされた、本研究ではこのうち原子核

の反跳の効果のみを取り入れて計算を行っている。

　　以下 1章では Lµ −Lτ 模型の説明、2章では渡辺らが導出したWoods-Saxon分布でのクーロンポテ

ンシャルの紹介と、Woods-Saxon分布での Lµ − Lτ ポテンシャルについての導出を行っている。3章で

は Decay In Orbitの崩壊率の計算として先行研究の手法についての概要について解説している。4章で

は Lµ − Lτ 模型の DIOエネルギースペクトルへの影響について数値計算された結果と、その影響を実際

に観測可能かについての議論をしている。
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第 1章

最小 Lµ − Lτ 模型

1.1 Lagrangian

始めに、本論文で探索可能性を検証する U(1)Lµ−Lτ
拡張模型 (Lµ − Lτ 拡張模型)について説明する。

この模型は Standard Model(SM)の SU(3)C × SU(2)L × U(1)Y 対称性に新たに U(1)Lµ−Lτ
を加えた

SU(3)C × SU(2)L × U(1)Y × U(1)Lµ−Lτ のゲージ対称性を持つ模型である。この模型では既存の SM

粒子に対して新たに Lµ − Lτ 電荷 (1.1)が割り当てられている。

表 1.1 U(1)Lµ−Lτ 対称性の電荷。ℓµ(τ) は SM の SU(2)doublet,µR(τR) は SM の SU(2)singlet、

レプトンの第二世代には +1が第三世代には −1が割り振られそれ以外の SM粒子では 0が割り振ら

れる。

ℓµ = (νµ, µL) ℓτ = (ντ , τL) µR τR other

Lµ − Lτ 1 -1 1 -1 0

Lµ − Lτ 拡張模型では SMの Lagrangianに加えて新たに

LZ′ = Lgauge + Lmass + Lint (1.1)

Lgauge = −1

4
Z ′
ρσZ

′ρσ (1.2)

Z ′
ρσ = ∂ρZ

′
σ − ∂σZ

′
ρ (1.3)

Lmass =
1

2
m′2Z ′

ρZ
′ρ (1.4)

Lint = g′Qαβ(ℓαγ
ρℓβ + ναγ

ρPLνβ)Z
′
ρ　　 (α, β = e, µ, τ) (1.5)

Qαβ = Qℓδαβ (1.6)

Qℓ =


+1 (l = µ)

−1 (l = τ)

0 (otherwise)

(1.7)
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が追加される。ここで Z ′
ρ は U(1)Lµ−Lτ

ゲージボソン、Z ′
ρσ はゲージ場の強度、g

′ はゲージカップリ

ング、ℓα, να はそれぞれ四成分の SM 荷電レプトンとニュートリノを表している。質量項 (1.4) は本来

U(1)Lµ−Lτ
対称性の自発的破れによって得られる項であるが、本論文では、この項を手で与え、m′ はパ

ラメーターとして取り扱う。また加えた対称性が U(1)であることから、

Lmixing = −ε
2
Z ′ρσBρσ (1.8)

のように表される SMの U(1)Y との tree-levelの kinetic mixing項 [1][2]を導入することが許されるが、

本論文では導入しない*1。　以上より、本論文で用いるラグランジアン (1.1)のパラメーターは g′ と m′

の２つのみである。本論文ではラグランジアン (1.1) で形式付けられる模型を“最小 Lµ − Lτ 模型”と

呼ぶ。

1.2 1-loopγ-Z ′mixingの計算

本研究では、ミューオンと原子核の間の相互作用への Lµ − Lτ 模型の影響について議論する。しかし

ながら Lµ −Lτ 模型では、レプトンの第二世代と第三世代以外の SM粒子はゲージボソン Z ′ と直接カッ

プルしないため、原子核 (や他の粒子)は図 1.1のような loopを通して Z ′ と結合することによりミュー

オンやタウオンと相互作用する。

図 1.1 ミューオンやタウオンと原子核 (やその他の粒子)の相互作用は 1loopを通して起こる。

このダイアグラムの 1-loopγ-Z ′mixingを計算する。loopを回る粒子はミューオンとタウオンのみであ

り、この loop部の寄与を計算すると

iΠµν(q) =
∑
ℓ

(−ie)(iQℓg
′)(−1)

∫
ddk

(2π)d
tr

[
γµ
i(k +mℓ)

k2 −m2
ℓ

γν
i(k + q +mℓ)

(k + q)2 −m2
ℓ

]
= (q2gµν − qµqν) · i[Πµ(q

2)−Πτ (q
2)]

≡ (q2gµν − qµqν) · iΠ(q2) (1.9)

となる。ここで

Πℓ(q
2) = − 8eg′

(4π)2

∫ 1

0

dxx(1− x)log[∆ℓ − iϵ](ℓ = µ, τ) (1.10)

*1 Ref.[3]において、mµ = mτ となる極限における離散対称性による式 (2.6)のような tree-level mixing項の禁止について
説明されている。また、Ref.[4]において tree-mixing項 (1.8)を含む Lµ − Lτ 模型の検証可能性が議論されている。
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∆ℓ = −x(1− x)q2 +m2
ℓ (1.11)

そして ϵは微小量である。ミューオンとタウに逆符号の Lµ − Lτ 電荷が与えられているため loopの発

散部分がキャンセルしている。式 (1.11)の x(1− x)は 0 < x < 1において 0 < x(1− x) ≤ 1/4である

ので、式 (1.10)の対数関数は

q2 = 4m2
ℓ (1.12)

を始点とする Branch cutを持つ。この始点はレプトン対生成のエネルギー閾値に対応する。X を正の実

数として

Im[log(−X ± iϵ)] = ±π (1.13)

であるので、∆ℓ < 0になる xの範囲

1− β

2
< x <

1 + β

2
(1.14)

β =

√
1−

4m2
ℓ

q2
(1.15)

において、関数 (1.10)の実部と虚部は

Re[Πℓ(q
2)] = − 8eg′

(4π)2

∫ 1+β
2

1−β
2

dxx(1− x)log[−∆ℓ] (1.16)

Im[Πℓ(q
2)] = − 8eg′

(4π)2
(−π)

∫ 1+β
2

1−β
2

dxx(1− x) (1.17)

のようにまとめられる。

1.3 最小 Lµ − Lτ 模型のパラメーター

Lµ − Lτ 模型のパラメーターはカップリング g′ と質量 m′ の二つであるが、現在、新物理を探索する

様々な実験によってパラメータ領域に制限がつけられている。また 1章でも述べたようにこの模型はある

パラメータ領域を取るとMuon g − 2の SMと実験の 3σ を超えるズレを説明することができる。Ref.[8]

より本論文で探索可能性を検証するこれらのパラメータ領域は図 1.2のようになる。

以下ではこの図 1.2に載せた実験とMuon g − 2について解説をする。

1.3.1 Neutrino Trident Production Process

CCFR 実験 (Columbia-Chicago-Fermilab-Rochester neutrino experiment)[5] において、Neutrino

Trident Production process:

νµ +N → νµ +N + µ+ + µ− (1.18)
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図 1.2 Lµ − Lτ 模型のパラメータm′, g′ に対する実験からの制限とミューオン g − 2を解決できる領域 [7]

図 1.3 Neutrino Trident Production processへの SMからの寄与

図 1.4 Neutrino Trident Production processへの Lµ − Lτ からの寄与
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が観測された。この過程への SMからの寄与は図 1.3のウィークボソンを媒介する２つのダイアグラムで

与えられ、最小 Lµ − Lτ 模型は、この過程に図 1.4の新たな寄与を与える [6]。

　しかし CCFR実験の実験値と SMの理論値は断面積の比として

σCCFR

σSM
= 0.82± 0.28 (1.19)

と、SMとほぼ無矛盾な結果が得られているため、最小 Lµ − Lτ パラメーターに厳しい制限がつけられ

る。図 1.2で色付けされている領域は、95%C.Lで除外されている。

1.3.2 Neutrino-electron scattering

Borexino実験は太陽ニュートリノと電子の弾性散乱の観測である。Ref.[8],[11]より、この観測によっ

て U(1)B−L 拡張理論のパラメータに対して図 1.5のような制限がつけられている。また Ref.[12]におい

て、太陽ニュートリノと電子の弾性散乱に対する過程に対する U(1)B−L と U(1)Lµ−Lτ
からの寄与 (図

1.6のダイアグラム)の振幅は

図 1.5 U(1)B−L 模型のパラメータの実験による制限 Ref.[8],[11]

iMB−L ∝
g2B−L

q2 −M2
A′

(1.20)

iMLµ−Lτ ∝ eg′ϵνe
q2 −m′2 (1.21)

との対応から最小 Lµ − Lτ 模型へ図 1.2の制限がつけられることが分かっている。ここで gB−L はゲー

ジ結合定数,MA′ はゲージボソンの質量である。また
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図 1.6 太陽ニュートリノと電子の弾性散乱に対する U(1)B−L からの寄与 (左図)と U(1)Lµ−Lτ からの寄与 (右図)

ϵνe = |Π(0)| = 8

3

eg′

(4π)2
log

mτ

mµ
(1.22)

は 1loopの寄与であり、(1.9)式からこの過程での伝搬運動量 q2 はミューオンの質量より小さいことか

ら近似して得られたものである。

1.3.3 e+e− → 4µ process

BaBar実験 [13][14]は e+e− → 　 4µを観測する実験である。この過程への、Lµ −Lτ 模型の寄与 (図

1.7のダイアグラム)

e+e− → µ+µ−Z ′, Z ′ → µ+µ− (1.23)

で与えられる。しかしこの過程に対する有意な信号事象は観測されなかった。この結果によって、Z ′ が

ミューオン対生成の閾値より重い領域 (m′ > 2mµ) に対してパラメーターに制限がつけられた [15]。図

1.2の色付けされた領域は 90%C.L.で除外される。

図 1.7 e+e− → 4µ過程への U(1)Lµ−Lτ 模型の寄与

1.3.4 Muon g − 2 discrepancy

スピンと磁場の相互作用

Hint = −µ ·B (1.24)
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における磁気モーメント

µ = −g e

2m
s (1.25)

の係数 gは Lande’の g因子と呼ばれ、Dirac方程式から計算すると g = 2となる。しかし実際の測定に

おける g因子は g = 2からズレており、これは場の理論における量子効果によるものである。g-2の値は

異常磁気能率と呼ばれている。

a = (g − 2)/2という値に直すと電子の異常磁気能率に関しては

aexpe = 1159652180.73(28)× 10−12 (1.26)

aSMe = 1159652175.86(0.10)(0.26)(8.48)× 10−12 (1.27)

[16][17] と、実験値と SM の理論値が 8 桁以上に渡って一致している。一方でミューオンの異常磁気能

率は、

aexpµ = 11659209.1(5.4)(3.3)× 10−10 (1.28)

aSMµ = 11659182.04(3.56)× 10−10 (1.29)

∆µ = aexpµ − aSMµ = (27.06± 7.26)× 10−10 (1.30)

[22]と 3.7σ の差がある。　最小 Lµ − Lτ 模型は、gµ − 2に図 1.8のような新たな寄与を与える。このダ

イアグラムによる補正は、

aZ
′

µ =
g′2

8π2

∫ 1

0

2m2
µx

2(1− x)

x2m2
µ + (1− x)m′2 dx (1.31)

のように与えられる [18]。この補正により図 1.2のパラメータ領域ではこのズレを 2σ以内に抑えられる。

図 1.8 aµ への SMからの最低次の寄与 (左図)と Lµ − Lτ からの寄与 (右図)

本研究では図 1.2の実験によって制限の掛からない領域でミューオン g − 2問題を解決可能なパラメー

タ領域のなかで最も大きな影響が期待できるパラメータであるm′ = 10[MeV],g′ = 5.0× 10−4 を用いて

ミューオン原子の崩壊 (Decay In Orbit)への影響を計算しさらにその影響を観測するのに必要なミュー

オン原子数を見積もり、ミューオン原子を用いる実験である COMET実験 [21]やMu2e実験 [23]で観測

可能かについて議論を行う。
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第 2章

ポテンシャル

この章では、ミューオン原子の崩壊過程 (Decay In Orbit,DIO)µ− → e− + ν̄e + νµ の始状態のミュー

オンや終状態の電子と原子核との相互作用について考える。SM内ではミューオンや電子と原子核の間に

は Coulomb相互作用が働くが、Lµ −Lτ 拡張模型では Coulomb相互作用に加えて Lµ −Lτ ゲージボソ

ンによって生まれる新たな相互作用が生まれる。2.1節でその相互作用を Born近似することによって得

られる Lµ − Lτ ポテンシャルを導出する。

　ミューオン原子では原子核の周りをまわるミューオンは電子の軌道半径の 1/200の軌道半径であるた

め、DIOの計算では原子核の電荷分布の影響を取り入れて相互作用を考えなければならない。このこと

については 2.2節で扱う。

2.1 Lµ − Lτ からの寄与

Lµ − Lτ のゲージボソンが存在すると仮定すると、ミューオンと原子核の間に図 1.1のダイアグラムの

寄与が生まれる。

このダイアグラムの振幅は

iMLµ−Lτ ∝ Zeg′|Π(q2)|
q2 −m′2 (2.1)

で表される。ここで

Π(q2) = Πµ(q
2)−Πτ (q

2)

= − 8eg′

(4π)2

∫ 1

0

dxx(1− x)log
m2

µ − x(1− x)q2

m2
τ − x(1− x)q2

= − 8eg′

(4π)2

∫ 1

0

dxx(1− x)log

(
m2

τ

m2
µ

)
+

8eg′

(4π)2

∫ 1

0

dxx(1− x)log

(
m2

τ

m2
τ − x(1− x)q2

)
− 8eg′

(4π)2

∫ 1

0

dxx(1− x)log

(
m2

µ

m2
µ − x(1− x)q2

)
(2.2)

と書くことができる。第一項は

8eg′

(4π)2

∫ 1

0

dxx(1− x)log

(
m2

τ

m2
µ

)
=

8

3

eg′

(4π)2
log

mτ

mµ
(2.3)
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となる。(2.1)式の Born近似を行うと、この第一項部分は

V ′(r) =
K

4πr
e−m′r (2.4)

という湯川型の相互作用となる。ここで

K =
8

3

Ze2

(4π)2
g′2

4π
log

mτ

mµ
(2.5)

第二項部分の Born近似は

Vµ(r) =
8e2g′2

(4π)2

∫
d3Q

(2π)3
eiQ·r 1

Q2 +m′2 Π̂(−Q2)

=
8e2g′2

(4π)2
i

4π2r

∫ ∞

−∞
dQ

QeiQr

Q2 +m′2 Π̂(−Q2) (2.6)

ここで

Π̂(−Q2) =

∫ 1

0

dxx(1− x)log

(
m2

µ

m2
µ + x(1− x)Q2

)
(2.7)

であり。前章で議論したようにこの logは Q = 2miで Branch cutを持つ。q = iQとすると

Im[Π̂(q2 − iϵ)] = (−π)
∫ 1+β

2

1−β
2

dxx(1− x)

= −π
6

√
1−

4m2
µ

q2

(
1 +

2m2
µ

q2

)
(2.8)

であり。

Vµ(r) = 　
8e2g′2

(4π)2
−1

4π2r

∫ ∞

2mµ

dq
qe−qr

q2 −m′2 Im[Π̂(q2 − iϵ)]

Vµ(r) =
4

3

Ze2g′2

(4π)3r

∫ ∞

2mµ

dq
qe−qr

q2 −m′2

√
1−

4m2
µ

q2

(
1 +

2m2
µ

q2

)
(2.9)

同様にして第三項は

Vτ (r) =
4

3

Ze2g′2

(4π)3r

∫ ∞

2mτ

dq
qe−qr

q2 −m′2

√
1− 4m2

τ

q2

(
1 +

2m2
τ

q2

)
(2.10)

となる。我々が本論文で考える Lµ − Lτ のゲージボソンの質量m′ = 10[MeV]に対し、ミューオンとタ

ウオンの質量は mµ = 105[MeV],mτ = 1771[MeV]と m′ より大きく Vµ, Vτ の指数関数部分が V ′ と比

べて速く落ちる為、本論文では Lµ − Lτ のゲージボソンによるミューオンと原子核の間の相互作用につ

いて V ′ のみを考える。

2.2 原子核分布でのポテンシャル

ミューオン原子のミューオンは電子に対するパウリの排他律には従わず、ミューオン原子が出来てすぐ

に 1S 状態に遷移する。またミューオンの質量は電子の質量の 200 倍大きくボーア半径は 200 分の 1 で

ある。従って原子核の電荷分布の影響を考慮しなければならない。先行研究 [27] では、原子核の電荷分
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布として 2パラメータのWoods-Saxon分布を用いて原子核分布での Coulombポテンシャルに対しての

定式化を行う。まずその導出について紹介した後、本研究で新たに定式化したWoods-Saxon 分布での

Lµ − Lτ ポテンシャル V ′(r)の定式化を行う。

ρ(R)ws =
ρ0

1 + e[(R−c)/a]
(2.11)

2.2.1 Coulombポテンシャル

一般の電荷分布 ρ(R)での Coulombポテンシャルは

VC(r) = Zα

∫
d3R

ρ(R)

|r −R|
(2.12)

となる。ここで、電荷分布が球対称 ρ(R)である場合には、角度方向の積分が計算を行うことで

VC(r) =
4πZα

r

[∫ r

0

dRρ(R)R2 + r

∫ ∞

r

dRρ(R)R

]
(2.13)

となる。

さて 2パラメータのWoods-Saxon分布

ρws(R) =
ρ0

1 + e[(R−c)/a]
(2.14)

を (2.14)式に代入して積分の計算を行うために、|x| < 1では

1

1 + x
= 1− x2 + x3 − x4 · · · =

∞∑
n=0

(−1)nxn (2.15)

となることを利用することにより、(R < c)では

1

1 + e[(R−c)/a]
= 1 +

∞∑
n=1

(−1)n exp

[
n(R− c)

a

]
(2.16)

(R > c)では

1

1 + e[(R−c)/a]
= e[−(R−c)/a] 1

1 + e[−(R−c)/a]

=

∞∑
n=0

(−1)n exp

[
−(n+ 1)(R− c)

a

]

= −
∞∑

n=1

(−1)n exp

[
−n(R− c)

a

]
(2.17)

1

1 + e[(R−c)/a]
= −

∞∑
n=1

(−1)n exp

[
−n(R− c)

a

]
(2.18)

と展開して計算を行う。まず (2.14)式の第一項

V 1
C(r) ≡

4πZα

r

∫ r

0

dRρ(R)R2 (2.19)
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を計算すると r < cでは、

V 1
C(r) =

4πZαρ0
r

∫ r

0

R2

(
1 +

∞∑
n=1

(−1)n exp

[
n(R− c)

a

])
dR

=
4πZαρ0

r

{
r3

3
+

∞∑
n=0

(−1)n
{
−2
(a
n

)3
exp

[
−nc
a

]
+

(
a

n
r2 − 2

(a
n

)2
r + 2

(a
n

)3)
exp

[
n(r − c)

a

]}}
(2.20)

となり、r > cでは

V 1
C(r) =

4πZαρ0
r

{∫ c

0

R2

(
1 +

∞∑
n=1

(−1)n exp

[
n(R− c)

a

])
dR+

∫ r

c

R2

(
−

∞∑
n=1

(−1)n exp

[
−n(R− c)

a

])
dR

}

=
4πZαρ0

r

{
c3

3
+

∞∑
n=1

(−1)n
{
−2
(a
n

)3
exp

[
−nc
a

]
− 4
(a
n

)2
c+

(
a

n
r2 + 2

(a
n

)2
r + 2

(a
n

)3)
exp

[
−n(r − c)

a

]}}
(2.21)

となる。同様に (2.14)式の第二項

V 2
C(r) ≡ 4πZα

∫ ∞

r

dRρ(R)R (2.22)

の積分を行うと

r > cでは

V 2
C(r) = 4πZαρ0

∫ ∞

r

R

(
−

∞∑
n=1

(−1)n exp

[
−n(R− c)

a

])
dR

= −4πZαρ0

∞∑
n=1

(−1)n
[
a

n
r +

(a
n

)2]
exp

[
−n(r − c)

a

]
(2.23)

r < cでは

V 2
C(r) = 4πZαρ0

{∫ c

r

R

(
1 +

∞∑
n=1

(−1)n exp

[
n(R− c)

a

])
dR+

∫ ∞

c

R

(
−

∞∑
n=1

(−1)n exp

[
−n(R− c)

a

])
dR

}

= 4πZαρ0

{
c2 − r2

2
+

∞∑
n=1

(−1)n
(
−2
(a
n

)2
+

[
−a
n
r +

(a
n

)2]
exp

[
n(r − c)

a

])}
(2.24)

が得られる。さて簡単のため

χ0 ≡ exp
[
− c

a

]
χ ≡ exp

[
r − c

a

]
(2.25)

に書き換え、エータ関数 η(s)とゼータ関数 ζ(s)との関係式

η(s) =

∞∑
n=1

(−1)n+1

ns
= (1− 21−s)ζ(s) (2.26)
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より、

η(2) =

∞∑
n=1

(−1)n+1

n2
= (1− 2−1)ζ(2) =

π2

12
(2.27)

であることを用いると

原子核分布での Coulombポテンシャルは VCWS(r) = V 1
C(r) + V 2

C(r)は

r > cで

VCWS(r) = 4πZαρ0

[
1

r

{
c3

3
+
π2a2c

3
− 2a3

∞∑
n=1

(−1)n

n3
(
χ0

n − χ−n
)}

+ a2
∞∑

n=1

(−1)n

n2
χ−n

]
(2.28)

r < cで

VCWS(r) = 4πZαρ0

[
c2

2
− r2

6
+
π2a2

6
− a2

∞∑
n=1

(−1)n

n2
χn − 2a3

r

∞∑
n=1

(−1)n

n3
(χ0

n − χn)

]
(2.29)

となる。

次に、(2.15)式の ρ0 は規格化条件 ∫
d3Rρ(R) = １ (2.30)

から求めることができる。(2.15)式の左辺を計算すると∫
d3Rρ(R) = 4πρ0

∫ ∞

0

dRR2 1

1 + exp
[
(R−c)

a

]
= 4πρ0

{∫ c

0

dRR2

(
1 +

∞∑
n=1

(−1)n exp

[
n(R− c)

a

])}

+4πρ0

{∫ ∞

c

dRR2

(
−

∞∑
n=1

(−1)n exp

[
−n(R− c)

a

])}

= 4πρ0

[
c3

3
− 2a3

∞∑
n=1

(−1)n
1

n3
exp

[
−nc
a

]
+ 4a2c

∞∑
n=1

(−1)n+1 1

n2

]

= 4πρ0
c3

3

[
1 +

(aπ
c

)2
− 6

(a
c

)3 ∞∑
n=1

(−1)n
1

n3
χ0

n

]
(2.31)

したがって

ρ0 =
3

4πc3

[
1 +

(aπ
c

)2
− 6

(a
c

)3 ∞∑
n=1

(−1)n
1

n3
χ0

n

]−1

(2.32)

となる。

2.2.2 Lµ − Lτ のゲージボソンによるポテンシャル V ′

次に前節で導出した Lµ − Lτ の相互作用への寄与

V ′(r) =
K

4πr
e−m′r (2.33)
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K =
8

3

Ze2

4π

g′2

4π
log

mτ

mµ
(2.34)

について Coulombポテンシャルと同様にWoods-Saxon分布 ρws を用いた V ′
WS(r)を求める。まず、一

般の電荷分布 ρ(R)の式に拡張すると

V ′(r) =
K

4π

∫
d3R

ρ(R)e−m′|r−R|

|r −R|
(2.35)

のように書ける。さらに、球対称の電荷分布 ρ(R)を仮定して、角度方向の積分を計算すると

J(R, r) = 2π

∫ +1

−1

e−m′
√

r2−2Rrµ+R2√
r2 − 2Rrµ+R2

dµ (2.36)

ここで
x =

√
r2 − 2Rrµ+R2 (2.37)

dx =
−rR√

r2 − 2Rrµ+R2
dµ (2.38)

と置換することにより、

J(R, r) = − 2π

rR

∫ |r−R|

r+R

e−m′xdx

=
2π

m′rR

[
e−m′|r−R| − e−m′(r+R)

]
(2.39)

となる。したがって ρ(R) = ρws(R)では

V ′
WS(r) =

Kρ0
2m′r

∫ ∞

0

dR
R

1 + e[(R−c)/a]

[
e−m′|r−R| − e−m′(r+R)

]
(2.40)

となる。まず第二項

V ′2
WS(r) ≡ −Kρ0e

−m′r

2m′r

∫ ∞

0

dR
R

1 + e[(R−c)/a]
e−m′R (2.41)

について Coulombポテンシャルと同様に積分を行うと

V ′2
WS(r) = −Kρ0 exp [−m

′r]

2m′r

{∫ c

0

dRR exp [−m′R]

(
1 +

∞∑
n=1

(−1)n exp

[
n(R− c)

a

])

−
∫ ∞

c

dRR exp [−m′R]

(
−

∞∑
n=1

(−1)n exp

[
−n(R− c)

a

])}

= −Kρ0 exp [−m
′r]

2m′r

{{
1

m′2 −
(
c

m′ +
1

m′2

)
exp [−m′c] +

∞∑
n=1

(−1)n
(

a

n−m′a

)2

exp
[
−nc
a

]}

−

{
exp[−m′c]

∞∑
n=1

(−1)n

[
ac

n−m′a
− ac

n+m′a
−
(

a

n−m′a

)2

−
(

a

n+m′a

)2
]}}

(2.42)

次に第一項

V ′1
WS(r) ≡

Kρ0
2m′r

{
exp [−m′r]

∫ r

0

dR
R

1 + e[(R−c)/a]
em

′R + exp [m′r]

∫ ∞

r

R

1 + e[(R−c)/a]
e−m′R

}
(2.43)
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の計算ではさらに

V
′1(1)
WS (r)

Kρ0 exp [−m′r]

2m′r

∫ r

0

dR
R

1 + e[(R−c)/a]
em

′R (2.44)

V
1(2)
WS (r) =

Kρ0 exp [m
′r]

2m′r

∫ ∞

r

dR
R

1 + e[(R−c)/a]
e−m′R (2.45)

と分けて、分母を展開し積分を行うと (r < c)では

V
′1(1)
WS (r) =

Kρ0 exp [−m′r]

2m′r

∫ r

0

dRR exp [m′R]

(
1 +

∞∑
n=1

(−1)n exp

[
n(R− c)

a

])

=
Kρ0
2m′r

{
exp [−m′r]

{
1

m′2 +
∞∑

n=1

(−1)n
(

a

n+m′a

)2

exp
[
−nc
a

]}

+

{(
r

m′ −
1

m′2

)
+

∞∑
n=1

(−1)n

(
ar

n+m′a
−
(

a

n+m′a

)2
)
exp

[
n(r − c)

a

]}}
(2.46)

となる。同様に

V
′1(2)
WS (r) =

Kρ0 exp [m
′r]

2m′r

{{∫ c

r

dRR exp [−m′R]

(
1 +

∞∑
n=1

(−1)n exp

[
n(R− c)

a

])}

+

{∫ ∞

c

dRR exp [−m′R]

(
−

∞∑
n=1

(−1)n exp

[
−n(R− c)

a

])}}

=
Kρ0 exp [m

′r]

2m′r

{{
−
(
c

m′ +
1

m′2

)
exp [−m′c]

}

+

{
exp [−m′c]

∞∑
n=1

(−1)n

(
ac

n−m′a
− ac

n+m′a
−
(

a

n−m′a

)2

−
(

a

n+m′a

)2
)}}

+
Kρ0
2m′r

{(
r

m′ +
1

m′2

)
−

∞∑
n=1

(−1)n

(
ar

n−m′a
−
(

a

n−m′a

)2
)
exp

[
n(r − c)

a

]}
(2.47)

従って (r < c)のとき V ′
WS(r) = V

′1(1)
WS (r) + V

′1(2)
WS (r) + V ′2

WS(r)を計算して

V ′
WS(r) =

Kρ0
2m′r

{{
2r

m′ +

∞∑
n=1

(−1)n

(
ar

n+m′a
− ar

n−m′a
−
(

a

n+m′a

)2

+

(
a

n−m′a

)2
)
exp

[
n(r − c)

a

]}

+ exp [−m′r]

( ∞∑
n=1

(−1)n

[(
a

n+m′a

)2

−
(

a

n−m′a

)2
]
exp

[
−nc
a

])

+ (exp [m′r]− exp [−m′r])

[{
−
(
c

m′ +
1

m′2

)
exp [−m′c]

}

+

{
exp [−m′c]

∞∑
n=1

(−1)n

(
ac

n−m′a
− ac

n+m′a
−
(

a

n−m′a

)2

−
(

a

n+m′a

)2
)}]}

(2.48)
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ここで、式を簡単に書くために

An ≡ 4nm′a3

(n2 −m′2a2)2
, Bn ≡ 2m′a2r

n2 −m′2a2
, Cn ≡ 2m′a2c

n2 −m′2a2
, Dn ≡ 2a2

n2 −m′2a2
, En ≡ 4m′2a4

(n2 −m′2a2)2

(2.49)

と定義して (2.26)式の書き換えを行うと

V ′
WS(r) =

Kρ0
2m′r

{
2r

m′ +
∞∑

n=1

(−1)n(An −Bn)χ
n − e−m′r

∞∑
n=1

(−1)nAnχ
n
0

−
(
em

′(r−c) − e−m′(r+c)
)[ c

m′ +
1

m′2
+

∞∑
n=1

(−1)n(Cn −Dn − En)

]}
(2.50)

と書くことができる。

さて、(r > c)では

V
′1(1)
WS (r) =

Kρ0 exp [−m′r]

2mr

{{∫ c

0

dRR exp [m′R]

(
1 +

∞∑
n=1

(−1)n exp

[
n(R− c)

a

])}

+

{∫ r

c

dRR exp [m′R]

(
−

∞∑
n=1

(−1)n exp

[
−n(R− c)

a

])}}

=
Kρ0 exp [−m′r]

2m′r

{{
1

m′2 +

(
c

m′ −
1

m′2

)
exp [m′c] +

∞∑
n=1

(−1)n
(

a

n+m′a

)2

exp
[
−nc
a

]}

+

{
exp [m′c]

∞∑
n=1

(−1)n

[
ac

n+m′a
− ac

n−m′a
−
(

a

n−m′a

)2

−
(

a

n+m′a

)2
]}}

+
Kρ0
2m′r

{ ∞∑
n=1

(−1)n

(
ar

n−m′a
+

(
a

n−m′a

)2
)
exp

[
−n(r − c)

a

]}
(2.51)

V
′1(2)
WS (r) = 　

Kρ0 exp [m
′r]

2m′r

{∫ ∞

r

dRR exp [−m′R]

(
−

∞∑
n=1

(−1)n exp

[
−n(R− c)

a

])}

= −Kρ0 exp [−m
′r]

2m′r

{{
1

m′2 −
(
c

m′ +
1

m′2

)
exp [−m′c] +

∞∑
n=1

(−1)n
(

a

n−m′a

)2

exp
[
−nc
a

]}

−

{
exp[−m′c]

∞∑
n=1

(−1)n

[
ac

n−m′a
− ac

n+m′a
−
(

a

n−m′a

)2

−
(

a

n+m′a

)2
]}}

(2.52)
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となるので (r > c)では

V ′
WS(r) =

Kρ0
2m′r

{ ∞∑
n=1

(−1)n

(
ar

n−m′a
− ar

n+m′a
+

(
a

n−m′a

)2

−
(

a

n+m′a

)2
)
exp

[
−n(r − c)

a

]}

+
Kρ0 exp [−m′r]

2m′r

{{ ∞∑
n=1

(−1)n

((
a

n+m′a

)2

−
(

a

n−m′a

)2
)
exp

[
−nc
a

]}

+

{
(exp [m′c] + exp [−m′c])

{
c

m′ +

∞∑
n=1

(−1)n
[

ac

n+m′a
− ac

n−m′a

]}}

−

{
(exp [m′c]− exp [−m′c])

{
1

m′2 +

∞∑
n=1

(−1)n

[(
a

n−m′a

)2

+

(
a

n+m′a

)2
]}}}

(2.53)

こちらも簡単にすると、

V ′
WS(r) =

Kρ0
2m′r

{ ∞∑
n=1

(−1)n(An +Bn)χ
−n − e−m′r

∞∑
n=1

(−1)nAnχ
n
0 + 2e−m′(r+c)

[
c

m′ −
∞∑

n=1

(−1)nCn

]

+
(
e−m′(r−c) − e−m′(r+c)

)[ c

m′ −
1

m′2 −
∞∑

n=1

(−1)n(Cn +Dn + En)

]}
(2.54)

となる。
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第 3章

ミューオン原子の崩壊率

ここでは Decay In Orbitの崩壊率について解説する。DIOとは原子核の周りを回る電子一つがミュー

オンに置き換わったミューオン原子で軌道上を回るミューオンが崩壊 µ− → e− + ν̄e + νµ する過程であ

る。DIOと真空中のミューオンの崩壊過程 µ− → e− + ν̄e + nuµ との違いとして始状態のミューオンと

終状態の電子が原子核との相互作用に影響される為、真空中の崩壊率の計算で用いる平面波の波動関数の

代わりにミューオンの束縛状態の波動関数と電子の歪曲された波動関数を用いる。まずは崩壊率の計算で

用いられる、始状態のミューオンの波動関数と終状態の電子の波動関数がどのように表されるかについて

説明をし、その後 Decay In Orbitの崩壊率について先行研究 [27][28]によって導出されたものを紹介す

る。先行研究での DIO崩壊率の導出に関する具体的な計算は AppendixCにまわし次章の計算に用いた

結果のみを記す。

3.1 波動関数

前章でミューオン原子の崩壊過程 µ→ e− + ν̄e + ν̄µ で始状態のミューオンと終状態の電子と原子核の

相互作用 (ポテンシャル)について導出した。これらのポテンシャル下における Dirac方程式を解くこと

によりミューオンと電子の波動関数が計算される。この節ではミューオンと電子の波動関数について解説

する。一般に球体ポテンシャルが存在する場合、系の並進対称性が破れるため波動関数は運動量の固有状

態ではなくなる。しかし球対称性は破られていないため角運動量の固有状態として書き表すことが出来

る。まずこの角運動量の固有状態として波動関数がどのように表せるかについて解説する。

　ミューオンについては電子に対するパウリの排他律に従わないため、ミューオン原子が出来てすぐに

1S 状態に遷移する。従って始状態のミューオンの波動関数は 1S 状態の波動関数として書くことが出来

る。一方で終状態の電子の波動関数は角運動量の固有状態で展開する部分波展開によって表される。電子

の部分波展開がどのように書き表されるかについてもここで導出する。

　原子核のクーロンポテンシャルの場合 Dirac 方程式は解析的に解くことが出来ないため、数値計算に

よって波動関数を計算する。数値計算をする際の境界条件としてクーロンポテンシャルが無限遠で点電荷

(V (r) = Zα/r)とみなせることから、無限遠で点電荷クーロンポテンシャルの Dirac波動関数を用いる。

点電荷クーロンポテンシャルでの Dirac波動関数の導出と具体的な数値計算の方法は Appendix Bにま

わす。
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3.1.1 Dirac方程式の球面波解

球対称 (静電)ポテンシャル V (r)が存在する場合、フェルミオンの波動関数 ψ(x) = e−iEtψ(r)の空間

部分 ψ(r)が満たす Dirac方程式は

[−iα ·∇+mβ − V (r)]ψ(r) = Eψ(r) (3.1)

この式の左辺の角括弧で囲まれている部分を非相対論的 Schrödinger方程式との対応からハミルトニアン

H と呼ぶ。

さて、この H との交換関係が 0となる保存量について考える。軌道角運動量演算子 Lを

Li =
1

2

(
li 0
0 li

)
(3.2)

li = (r × p)i = −iϵijkrj∂k (3.3)

と定義すると、ハミルトニアン H との交換関係は

[H,Li] = −ϵijkαj∂k ̸= 0 (3.4)

となるため軌道角運動量 Lは保存量ではない。また、スピン角運動量演算子 S を

Si =

(
si 0
0 si

)
(3.5)

si =
1

2
σi (3.6)

と定義すると

[H,Si] = ϵijkαj∂k ̸= 0 (3.7)

[H,J ] = 0 (3.8)

となり、S も保存量にならないが、全角運動量演算子

J = L+ S (3.9)

を定義すると (3.4)式と (3.7)式より J は H と交換する保存量である。したがって球対称ポテンシャル

が存在するときの Dirac波動関数は J の固有状態として書くことができる。そこで、

J =
1

2

(
j 0
0 j

)
, j = l+ s (3.10)
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に対し、次の固有値方程式

j2χj,ν = j(j + 1)χj,ν , jzχj,ν = νχj,ν (3.11)

を満たす 2成分固有関数 ξj,ν , ηj,ν を用いて

ψj,ν(r) =

(
ξj,ν
ηj,ν

)
(3.12)

と表す。(3.11) 式の解は軌道角運動量 l の固有関数である球面調和関数 Y m
l とスピン角運動量演算子 s

の固有関数である χσ
1/2(σ = 1, 2)

l2Y m
l = l(l + 1)Y m

l , lzY
m
l = mY m

l (3.13)

χ1
1/2 =

(
1
0

)
χ2
1/2 =

(
0
1

)
(3.14)

の合成関数であるスピノール球面調和関数

Ωl
j,ν(r̂) =

∑
m,σ

(l,m, 1/2, σ|j, ν)Y m
l (r̂)χσ

1/2

=


√

l+1/2+ν
2l+1 Y

ν−1/2
l (r̂)

(
1

0

)
+
√

l+1/2−ν
2l+1 Y

ν+1/2
l (r̂)

(
0

1

)
(j = l + 1/2)

−
√

l+1/2−ν
2l+1 Y

ν−1/2
l (r̂)

(
1

0

)
+
√

l+1/2+ν
2l+1 Y

ν+1/2
l (r̂)

(
0

1

)
(j = l − 1/2)

(3.15)

を使って表すことが出来る。ここで新たな量子数 κを

κ ≡

{
−(l + 1) = −(j + 1/2) (j = l + 1/2)

l = j + 1/2 (j = l − 1/2)
(3.16)

と定義すると、(3.11)式の解は

χκ,ν(r̂) =

{
Ω

j−1/2
j,ν (r̂) (κ < 0)

Ω
j+1/2
j,ν (r̂) (κ > 0)

(3.17)

と書き直すことができる。この χκ,ν(r̂)と動径方向の波動関数 gκ(r), fκ(r)を用いて球対称のポテンシャ

ルが存在するときの Dirac波動関数 ψj,ν(r)は

ψj,ν(r) =

(
gκ(r)χκ,ν(r̂) + g−κ(r)χ−κ,ν(r̂)
ifκ(r)χ−κ,ν(r̂) + if−κ(r)χκ,ν(r̂)

)
(3.18)

と表せる。ここで (3.18)式を (3.1)式に代入することで gκ(r), fκ(r)の従う動径方向の波動方程式を導出

する。

σ ·∇[fκ(r)χ−κ,ν(r̂) + f−κ(r)χκ,ν(r̂)]

+(m− E − V (r))(gκ(r)χκ,ν(r̂) + g−κ(r)χ−κ,ν(r̂)) = 0 (3.19)
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σ ·∇[gκ(r)χκ,ν(r̂) + g−κ(r)χ−κ,ν(r̂)]

+(m+ E + V (r))(fκ(r)χ−κ,ν(r̂) + f−κ(r)χκ,ν(r̂)) = 0 (3.20)

ここで、r のみに依存する任意の関数 G(r)に対して

σ ·∇[G(r)χκ,ν(r̂)] = −
(
dG(r)

dr
+

1 + κ

r
G(r)

)
χ−κ,ν(r̂) (3.21)

が成り立つことを用いることで、gκ(r), fκ(r)に関する方程式

dgκ(r)

dr
+

1 + κ

r
gκ(r)− (E +m+ V (r))fκ(r) = 0 (3.22)

dfκ(r)

dr
+

1− κ

r
fκ(r)− (E −m+ V (r))gκ(r) = 0 (3.23)

および、κ→ −κと置き換えた場合に対応する g−κ(r), f−κ(r)に関する方程式が得られる。よって

ψκ,ν(r) =

(
gκ(r)χκ,ν(r̂)
ifκ(r)χ−κ,ν(r̂)

)
(3.24)

と定義すると球対称のポテンシャルが存在するときの Dirac波動関数 ψj,ν(r)は ψκ,ν(r)と ψ−κ,ν(r)の

重ね合わせで表される。

ψj,ν(r) = ψκ,ν(r) + ψ−κ,ν(r) (3.25)

3.1.2 部分波展開

最初に自由場の Dirac方程式に対する平面波解

ψp,s
pl (r) =

√
E +m

(
1

σ·p
E+m

)
eip·rχs

1/2 (3.26)

の部分波展開を考える。

eip·r =
∑
L,M

4πiLYM∗
L (p̂)YM

L (r̂)jL(pr) (3.27)

となることを用いると、

ψp,s
pl (r) =

√
E +m

∑
L,M

4πiLYM∗
L (p̂)

(
1

σ·p
E+m

)
jL(pr)Y

M
L (r̂)χs

1/2

=
√
E +m

∑
L,M

4πiLYM∗
L (p̂)

(
1

σ·p
E+m

)
jLpr

∑
J,ν

(L,M, 1/2, s|J, ν)ΩL
J,ν(r̂)

=
√
E +m

∑
κ,ν

4πilκY ν−s∗

lκ
(p̂)(lκ, ν − s, 1/2, s|jκ, ν)

(
1

−i σ·p
E+m

)
jlκ(pr)χκ,ν(r̂) (3.28)
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さらに、(3.21)式と球ベッセル関数の漸化式(
d

dz
− n

z

)
jn(z) = −jn+1(z) (3.29)

(
d

dz
+
n+ 1

z

)
jn(z) = jn−1(z) (3.30)

より

−i σ · p
E +m

[jlκ(pr)χκ,ν(r̂)] =
i

E +m

[
d

dz
+

1 + κ

r

]
jlκ(pr)χ−κ,ν(r̂)

=
ip

E +m
sign(κ)jl−κ(pr) (3.31)

となることを用いると自由場の Dirac方程式に対する平面波解の部分波展開

ψp,s
pl (r) = 　

∑
κ,ν

4πilκY ν−s∗

lκ
(p̂)(lκ, ν − s, 1/2, s|jκ, ν)

(
gplκ (r)χκ,ν(r̂)
ifplκ (r)χ−κ,ν(r̂)

)
(3.32)

gplκ (r) =
√
E +mjlκ(pr) (3.33)

fplκ (r) =
√
E −msign(κ)jl−κ(pr) (3.34)

が得られる。動径方向の波動関数 gplκ (r), fplκ (r)は、無限遠方 (r → ∞)で

gplκ (r) →
√
E +m

pr
cos

(
pr − lκ + 1

2
π

)
(3.35)

fplκ (r) → −
√
E −m

pr
sin

(
pr − lκ + 1

2
π

)
(3.36)

のように振る舞う。

次に一般の球対称ポテンシャルが存在する場合を考える。球対称ポテンシャルは平面波における角度部

分は変化させず、動径方向の波動関数のみを変化させる。したがって (3.32)式を修正することで球対称

ポテンシャルが存在する Dirac方程式の波動関数の部分波展開は

ψp,s(r) = 　
∑
κ,ν

4πilκY ν−s∗

lκ
(p̂)(lκ, ν − s, 1/2, s|jκ, ν)cκ

(
gκ(r)χκ,ν(r̂)
ifκ(r)χ−κ,ν(r̂)

)
(3.37)

と表せることがわかる。cκ は部分波を重ね合わせる際に重みを与える係数である。

原子核 Coulomb potential での cκ を求めるため、波動関数の遠方での振る舞いを考える。原子核

Coulomb potential は無限遠 (r → ∞) で点電荷 Coulomb potential に漸近するため、波動関数は点

電荷ポテンシャルに対する Dirac 方程式の解の重ね合わせによって表現できる。さて原点で正則な解

gregκ (r), f regκ (r)と非正則な解 girrκ (r), f irrκ (r)の線形結合によって記述できると仮定すると(
gκ(r)
fκ(r)

)
→ cos δκ

(
gregκ (r)
f regκ (r)

)
− sin δκ

(
girrκ (r)
f irrκ (r)

)
(3.38)
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と表すことができ、点電荷分布における解の無限遠での漸近形 (B.60),(B.61),(B.71),(B.72)を用いれば

gκ(r) →
√
E +m

pr

[
cos δκ cos

(
pr − lκ + 1

2
π + δC

)
− sin δκ sin

(
pr − lκ + 1

2
π + δC

)]
=

√
E +m

pr
cos

(
pr − lκ + 1

2
π + δC + δκ

)
(3.39)

fκ(r) →
√
E −m

pr

[
− cos δκ sin

(
pr − lκ + 1

2
π + δC

)
− sin δκ cos

(
pr − lκ + 1

2
π + δC

)]
= −

√
E −m

pr
sin

(
pr − lκ + 1

2
π + δC + δκ

)
(3.40)

となる、ここで δC は自由場の波動関数からの点電荷ポテンシャルによる位相のずれを表しているため、

δκ が点電荷波動関数からの原子核ポテンシャルによる位相のズレであることが分かる。さらに

z = pr − lκ + 1

2
π + δC (3.41)

とおき、

cos (z + δκ) =
ei(z+δκ) + e−i(z+δκ)

2

= e∓δκ
eiz + e−iz − e±iz + e±i(z+2δκ)

2

= e∓δκ

(
cos z +

e±2iδκ − 1

2
e±iz

)
(3.42)

sin (z + δκ) =
ei(z+δκ) − e−i(z+δκ)

2i

= e∓δκ
eiz − e−iz ∓ e±iz ± e±i(z+2δκ)

2i

= e∓δκ

(
sin z ± e±2iδκ − 1

2i
e±iz

)
(3.43)

が成り立つことを用いると(
gκ(r)
fκ(r)

)
→ e∓iδκ

[
1

pr

( √
E +m cos z

−
√
E −m sin z

)
+

(e±2iδκ − 1)e±iz

2pr

( √
E +m

±i
√
E +m

)]
(3.44)

と書き直すことができる。したがって、(3.37)式で導入した係数 cκ を

cκ = e±iδκ (3.45)

と選べば、(3.35),(3.36)式と見比べることで第一項が平面波のような振る舞いを持っており、第二項が球

対称ポテンシャルによる波動関数の歪曲を表していると解釈できる。(ただし、δC が r を含むため、第一

項が完全な平面波になっているわけではない事に注意する。)以上より、一般の球対称ポテンシャルによ

り歪曲を受けた散乱波の部分波展開は

ψp,s(r) = 　
∑
κ,ν

4πilκY ν−s∗

lκ
(p̂)(lκ, ν − s, 1/2, s|jκ, ν)e±iδκ

(
gκ(r)χκ,ν(r̂)
ifκ(r)χ−κ,ν(r̂)

)
(3.46)
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と表される。各部分波にたいする δκ の値は、遠方での境界条件を満たすように数値的に求める必要があ

る。+(−)の符号は境界条件として外向き (内向き)球面波をとることに対応しており、今回の計算で終状

態の散乱波を求めるには内向きの境界条件を選ぶ。

計算に用いる始状態のミューオンの 1S状態の波動関数と終状態の電子の部分波展開で記述された波動

関数は

ψqe,se
e (x) =

∑
κ,ν

aκ,ν,se(q̂e)ψ
κ,ν
qe (x)

aκ,ν,se(q̂e) = 4πilκ(lκ, ν − se, 1/2, se|jκ, ν)Y ν−se∗
lκ

(q̂e)e
−iδκ

ψpµ,sµ
µ (x) = asµψ

−1,sµ
pµ

(x)

asµ = e−iδ1 (3.47)

ここで

ψκ,ν
q (x) =

(
gκq (x)χ

ν
κ(x̂)

ifκq (x)χ
ν
−κ(x̂)

)
(3.48)

そして gκq (x), f
κ
q (x) はWoods-Saxon 分布でのクーロンポテンシャルが存在するときの (3.22)(3.23)

を解くことによって求められる。具体的な計算方法については AppendixBを参照。

3.2 DIOの崩壊率

ミューオン原子中でのミューオンの崩壊 µ− → e− + ν̄e + νµ に関わるラグランジアンは

L(x) = −GF√
2
ψ̄eγλ(1− γ5)ψνe

ψ̄νµ
γλ(1− γ5)ψµ + h.c. (3.49)

ここで GF はフェルミ結合定数、ψa 　は粒子 a(a = µ, e, νµ, νe)の場の演算子を表す。ミューオン、電

子の波動関数がポテンシャルの影響を受ける一方でニュートリノの波動関数は真空中での崩壊と同じ平面

波の波動関数を用いる。Fierz変換を行い

L(x) = −GF√
2
ψ̄eγλ(1− γ5)ψµψ̄νµ

γλ(1− γ5)ψνe
+ h.c. (3.50)

とラグランジアンを書き直すことでミューオン-電子に関する部分とニュートリノに関する部分に分割

すると DIOの計算に都合が良くなる。以下ではニュートリノおよび反ニュートリノの質量をゼロと仮定

する。

このラグランジアンを用いて遷移振幅Mは

Mδ(Ef − Ei) =

∫
d4x ⟨e, νµ| L(x) |µ, νe⟩ (3.51)

となる。そして DIOの崩壊率はフェルミの黄金律により

PdEdΩe =

1

2

∑
sµ,se

d3qe
(2π)32E

 ∑
sνµ ,sνe

∫
d3pνµ

d3pνe

(2π)62p0νµ
2p0νe

 |M|2(2π)δ(p0µ − p0νµ
− p0νe

− E)

(3.52)



第 3章 ミューオン原子の崩壊率 25

と表される。先行研究 [27]より計算した結果は

N(E) ≡ 1

Γ0

dΓ

dE
(E) =

1

Γ0
4πP (E)

=
8qe
πm5

µ

∫ W−E

0

k2dk
∑
J,κ

(2jκ + 1)

×

[
− (W − E)k

2J + 1

{
Sjκ(iS

+1∗
jκ

+ iS−1∗
jκ

) + c.c.
}

+k2

{
|Sjκ |2 +

|S+1
jκ

+ S−1
jκ

|2

(2J + 1)2

}

+{(W − E)2 − k2}

{
|S0

jκ
|2

J(J + 1)
+

|S+1
jκ

|2

(J + 1)(2J + 1)
+

|S−1
jκ

|2

J(2J + 1)

}]
(3.53)

となる。具体的な計算は AppendixC で紹介する。ここで DIO の崩壊率を自由ミューオン Γ0 =

G2
Fm

5
µ/192π

3 によって規格化している。W はスペクトルの end point である。k はニュートリノの

運動量である。また

S+1
jκ

=
1

2

∫
x2dxjJ+1(kx)

[
{1 + (−1)lκ+L+1}{(κ+ J)gκe (x)g

−1
µ (x)− (κ− 2− J)fκe (x)f

−1
µ (x)}

− i{1 + (−1)lκ+J}{(κ+ 2 + J)gκe (x)f
−1
µ (x) + (κ− J)fκe (x)g

−1
µ (x)}

]
S0
jκ =

1

2

∫
x2dxjJ(kx)

[
{1 + (−1)lκ+L}(κ+ 1){gκe (x)g−1

µ (x)− fκe (x)f
−1
µ (x)}

− i{1 + (−1)lκ+J+1}(κ− 1){gκe (x)f−1
µ (x) + fκe (x)g

−1
µ (x)}

]
S−1
jκ

=
1

2

∫
x2dxjJ−1(kx)

[
{1 + (−1)lκ+L+1}{(κ− 1− J)gκe (x)g

−1
µ (x)− (κ− 1 + J)fκe (x)f

−1
µ (x)}

− i{1 + (−1)lκ+J}{(κ+ 1− J)gκe (x)f
−1
µ (x) + (κ+ 1 + J)fκe (x)g

−1
µ (x)}

]
Sjκ =

1

2

∫
x2dxjJ−1(kx)

[
{1 + (−1)lκ+J}{gκe (x)g−1

µ (x) + fκe (x)f
−1
µ (x)}

− i{1 + (−1)lκ+J+1}{gκe (x)f−1
µ (x)− fκe (x)g

−1
µ (x)}

]
(3.54)

は荷電レプトンカレントであり、Dirac方程式をといて得られた電子とミューオンの波動関数 (3.47)を用

いて計算される。

さて [28]よりエネルギースペクトルの end pointW は原子核の反跳効果を取り入れて

W = mµ −Bµ − E2

2mN
(3.55)

と書き表せる。ここでmµ はミューオンの静止質量 Bµ はミューオンの束縛エネルギー、そして第三項が

原子核の反跳効果である。
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第 4章

結果・考察

4.1 Lµ − Lτ 模型の DIOスペクトラムへの影響

一章で説明したように、Lµ −Lτ 模型のパラメーターm′, g′ として実験によって制限の掛からない領域

かつミューオン g − 2のズレを説明可能な領域の中で可能な限り大きなカップリングと小さな質量である

m′ = 10[MeV], g′ = 5.0× 10−4 (4.1)

を用いて計算を行った。

またミューオン原子の原子核の候補として 208Pb、56Fe、27Alを用いた。それぞれの元素で、Woods-

Saxon分布 (2.11)式のパラメーターは表 4.1のようになっている。[19]

27Al 56Fe 208Pb

a[fm] 0.569 0.5935 0.549

c[fm] 2.845 3.971 6.624

表 4.1 208Pb,56Fe,27AlのWoods-Saxonパラメータ

さて、始めにそれぞれの元素で計算した SMでの DIOエネルギースペクトル NSM (E)は図 4.1図 4.2

図 4.3のようになる。原子番号 Z が大きい原子ほど束縛エネルギーが大きくなるため end pointのエネ

ルギーが小さくなっていることが分かる。

次に Lµ − Lτ 模型が存在するときの DIO のエネルギースペクトル Nµ−τ (E) と SM で計算された

NSM (E)とのズレを図 4.4図 4.5図 4.6に載せる。3つの元素を比較すると、このズレの大きさは Z に

比例して大きくなっていることが分かる。ズレの原因となるポテンシャル V ′(r)が Z に比例することか

らこの結果が理解できる。

ここで、ズレの影響がエネルギー依存性を見るために鉛でのエネルギースペクトルの相対誤差

(NLµ−Lτ
−NSM )/NSM を見ると図、エネルギーの高い領域にいくにつれてズレが大きくなっているこ

とが分かる。これは、湯川ポテンシャルが空間的な原点に近いほど大きくなり、そのフーリエ変換として

理解できる。
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図 4.1 208Pbを用いて SMで計算された放出される電子のエネルギースペクトル N(E)

図 4.2 56Feを用いて SMで計算された放出される電子のエネルギースペクトル N(E)

図 4.3 27Alを用いて SMで計算された放出される電子のエネルギースペクトル N(E)
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図 4.4 208Pbで計算されたエネルギースペクトルのズレ Nµ−τ (E)−NSM (E)

図 4.5 56Feで計算されたエネルギースペクトルのズレ Nµ−τ (E)−NSM (E)

図 4.6 27Alで計算されたエネルギースペクトルのズレ Nµ−τ (E)−NSM (E)
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図 4.7 208Pbで計算されたエネルギースペクトルの相対誤差 (Nµ−τ (E)−NSM (E))/N(E)

4.2 Lµ − Lτ 模型の影響の測定に必要なミューオン原子数の推定

このズレを観測するために必要なミューオン原子の数 N0 を求める。N0 個のミューオンの崩壊によっ

て出てくる電子のなかで Ea Eb のエネルギーをもつ電子の個数は単位時間当たり∫ Eb

Ea

dΓ

dE
(E)dE ×N0 (4.2)

個である。(4.3)式に観測時間を掛けることで観測される電子の総数が求まる。しかし、ミューオン原子

の平均寿命 tma を超えた時間 t > tma では崩壊が起きないと考えられる為 tma を (4.3)式にかけたもの

が観測される電子の総数となる。ここで N(E)は自由ミューオンの崩壊率によって規格化されているた

め自由ミューオン原子の平均寿命と自由ミューオンの平均寿命の比率をかけなければならない。ここで

ミューオン原子の平均寿命はミューオンが原子核に捕獲されることにより、自由ミューオンの平均寿命よ

り短くなる。各元素のミューオン原子の平均寿命は表 4.2のようになる [20]

free µ 27Al 56Fe 208Pb

平均寿命 [ns] 2197 880 201 82

表 4.2 27Al,56Fe,208Pbのミューオン原子の平均寿命と自由ミューオンの平均寿命との比較

さて、このズレが統計的に有意か確かめる指標として次の量を用いる。

χ2
0 ≡ 2(N ′

SM −N ′
µ−τ +N ′

µ−τ ln
N ′

µ−τ

N ′
SM

) (4.3)

ここで

N ′
SM(µ−τ) =

tma

tfm

∫ Eb

Ea

NSM(µ−τ)(E)dE ×N0 (4.4)

この χ2
0 を用いて χ2 検定を行う。以下では実験として以下の領域を測定すると仮定した場合をそれぞ

れ考える。

(1)エネルギーの全領域を測定
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(2)50MeV以上の領域を測定

(3)80MeV以上の領域を測定

(4)エネルギーの end point付近の領域を測定　

(2)はミューオン原子の寿命が DIOスペクトルの内、出てくる電子の数の大きい 50[MeV]以下を用いて

決定されるため、その寿命の決定につかわれない電子の測定領域である

(3)はミューオン原子を用いた実験である COMET実験 [21]やMu2e実験 [23]で測定する領域である。

(1) (4)の領域で測定したとき、有意水準 5%でこのズレを観測するために必用なミューオン原子数は

それぞれの元素に対して表 4.3のように与えられる。

27Al 56Fe 208Pb(前) 208Pb(後)

(1) 1.32× 1016 5.48× 1017 1.20× 1017 1.66× 1017

(2) 4.12× 1017 5.87× 1017 5.78× 1018 1.25× 1019

(3) 1.30× 1021 1.44× 1021 8.19× 1021 1.11× 1024

(4) 3.19× 1025 2.56× 1025 1.56× 1025 4.15× 1026

表 4.3 エネルギー領域として (1)全領域の観測 (2)50[MeV]以上の領域の観測 (3)end point付近の

エネルギーの観測を行った際に必用なミューオンの数

となる。図 4.4～4.6 までの結果から Z が大きな方がエネルギースペクトルのズレが大きくなり χ2
0 が

増えることが分かるが、表 4.2より Zが大きな元素の方がミューオン原子の平均寿命が短くなるため χ2
0

は減る。各エネルギー幅の計算でこの二つの効果の内どちらが勝つかによって大きな Z の元素が有利に

なるか小さな Z の元素が有利になるかが決まる。表 4.3の結果では end pointでのみ Z が大きな元素が

優勢になっているが、これは図 4.7で示したように end pointの方が相対誤差が大きくなるため前者の効

果が大きく働いた結果と考えられる。

さてこれらの結果と実際にミューオン原子を用いた Beyond Standard Model探索実験である COMET

実験やMu2e実験でのミューオン生成数を比較する。なおこれらの実験では Alを用いて測定を行う予定

である。COMET実験でのミューオン原子生成数は 2× 1018 個でMu2e実験では 5× 1017 個である。こ

れらの実験では end point付近のエネルギーのみを測定するためこれらの実験シナリオでは DIO過程に

対する Lµ − Lτ 模型の影響を観測する実験感度は得られない。しかし生成数のみを考慮すると全領域や

50MeV以上の測定では Lµ − Lτ の影響を十分に観測可能であると言える。その為、将来的にミューオン

原子を用いた広いエネルギー帯で観測を行う実験を行うことで Lµ − Lτ 模型の影響の観測や模型に対す

る制限をつけることが期待できる。
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第 5章

まとめと今後の展望

本論文では Standard Model を超える物理 (Beyond Standard Model,BSM) の模型の一つであり、

ミューオンの異常磁気能率の問題の解決が可能な最小 U(1)Lµ−Lτ 模型に注目しミューオン原子中の

ミューオンの崩壊過程 (Decay In Orbit,DIO)への影響を計算した。また Decay In Orbitで必要となる

原子核分布でのポテンシャルとしての模型の影響について新たに定式化を行った。

　そしてこの影響を見積もるために必要なミューオン原子の個数を見積もったところ現在計画されている

ミューオン原子を用いる実験のシナリオでは end point付近のエネルギー帯で観測を行う為、U(1）Lµ−Lτ

模型の影響を観測する感度に到達していないが、観測するエネルギー帯を広げることで U(1）Lµ−Lτ
模型

の証拠の発見やパラメータに関する制限が期待できることが分かった。

　今後の課題として DIOの計算を真空偏極や放射補正を取り入れ計算を行うことでより現実に近い模型

で予言が可能となるため、DIOの計算にこれらを取り入れて計算を行うことがあげられる。また計算で

用いたWoods-Saxonパラメータに関する不定性の影響についても考えなければならない。

　さらに今後の展望として本論文で導出した BSM の影響であるミューオンと原子核との相互作用を

Woods-Saxon分布を用いた定式化は一般の U(1)拡張模型に対しても用いることができるため、様々な

U(1)拡張模型に対して DIOへの影響を計算し必要なミューオン原子数を求めることが出来る。
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Appendix A

notation

・単位系

　本論文では自然単位系を用いる。
c = ℏ = ε = 1 (A.1)

・計量

　相対論における計量は次のようにとる。

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (A.2)

・Dirac行列

4元スピノールを考えるときには Dirac表示を用いる。

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
(A.3)

ここで I は 2× 2の単位行列,σi はパウリ行列である。また、行列 α, β は次のように定義される。

αi = γ0γi =

(
0 σi
σi 0

)
, β = γ0 =

(
I 0
0 −I

)
(A.4)

・波動関数の規格化始状態のミューオン波動関数 ψp,s
µ (x)及び終状態の電子波動関数 ψp,s

e (x)は次のよう

に規格化する。 ∫
d3xψp,s†

µ (x)ψp′,s′

µ (x) = δpp′δss′ (A.5)∫
d3xψp,s†

e (x)ψp′,s′

e (x) = 2p0(2π)3δ(p− p′)δss′ (A.6)

また、それぞれに対応する生成・消滅演算子は反交換関係

{asµ(p), as
′

µ (p)} = δpp′δss′ (A.7)

{ase(p), as
′

e (p)} = (2π)3δ(p− p′)δss′ (A.8)

を満たすものとする。
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Appendix B

波動関数

ミューオン原子の崩壊（DIO)は、崩壊率の計算に束縛状態のミューオン波動関数と散乱状態の電子の

波動関数を用いる。この章ではそれらの波動関数の計算方法について解説する。前章で述べたように原子

核のポテンシャルは球対称であるため、まず球対称ポテンシャルが存在する場合の Dirac波動関数の導出

を行う。原子核 (の電荷分布での)Coulombポテンシャルによる束縛状態のミューオンの波動関数と散乱

状態の電子の波動関数はいずれも解析的に計算することが出来ず数値計算によって求められる。その際の

境界条件としてポテンシャルが無限遠方では点電荷とみなせることから点電荷の Coulombポテンシャル

の束縛状態と散乱状態の解を用いる。そのため点電荷の波動関数の導出を行い、DIOの崩壊率の計算に

用いる原子核 Coulombポテンシャルの波動関数の数値計算法について説明する。

B.1 束縛状態のミューオンの波動関数

DIOの計算に用いる原子核 Coulombポテンシャルによる束縛状態のミューオンの波動関数について説

明する。章のはじめで述べたように原子核分布のポテンシャルでは Dirac方程式は解析的に計算できない

ので数値計算を行う。数値計算では境界条件として点電荷ポテンシャルでの波動関数 ψPC を用いるため、

先に ψPC の導出を行う。

B.1.1 点電荷 potentialでの束縛状態の波動関数

点電荷の Colomb ポテンシャル V (r) = Zα/r が存在するときの動径方向の Dirac 方程式は

(3.22)(3.23)式より

dgκ(r)

dr
+

1 + κ

r
gκ(r)− (E +m+

Zα

r
)fκ(r) = 0 (B.1)

dfκ(r)

dr
+

1− κ

r
fκ(r)− (E −m+

Zα

r
)gκ(r) = 0 (B.2)

となる。また、新たに動径方向の波動関数を

Gκ(r) ≡ rgκ(r), Fκ(r) ≡ rfκ(r) (B.3)

と定義すると、Gκ(r), Fκ(r)が満たす方程式は

dGκ(r)

dr
+
κ

r
Gκ(r)− (E +m+

Zα

r
)Fκ(r) = 0 (B.4)
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dFκ(r)

dr
− κ

r
Fκ(r) + (E −m+

Zα

r
)Gκ(r) = 0 (B.5)

と書くことができる。まず、原点付近での振る舞いを考えるとこの方程式は

dGκ(r)

dr
+
κ

r
Gκ(r)−

Zα

r
Fκ(r) = 0 (B.6)

dFκ(r)

dr
− κ

r
Fκ(r) +

Zα

r
Gκ(r) = 0 (B.7)

とみなすことが出来る。Gκ(r), Fκ(r)が rについての冪級数展開を考えると、原点付近では rの次数が最

も小さいものが主要項となるため、その次数を γ,定数を a, bとして Gκ ∼ arγ , Fκ ∼ brγ のように振る

舞うことが分かる。これを (B.6)(B.7)式に代入すると{
(aγ + aκ− Zαb)rγ−1 = 0

(bγ − bκ+ Zαa)rγ−1 = 0
(B.8)

となり、a, bについての連立方程式を行列表示にすれば(
γ + κ −Zα
Zα γ − κ

)(
a
b

)
(B.9)

となる。したがって a, bが 0でない解を持つための条件として∣∣∣∣ γ + κ −Zα
Zα γ − κ

∣∣∣∣ = γ2 − κ2 + (Zα)2 = 0 (B.10)

γ = ±
√
κ2 − (Zα)2 (B.11)

を得る。Zα ≃ Z
137 < 1において |κ| = |jκ + 1/2| > 1より γ は実数である。原点で正則であるために以

降では、γ > 0つまり γ = +
√
κ2 − (Zα)2 とする。

さて、波動関数の遠方での振る舞いを考える。ここで新たな変数

ρ ≡ 2λr, λ ≡
√
m2 − E2 (B.12)

によって (B.4)(B.5)式を書き換えると

dGκ(ρ)

dρ
+
κ

ρ
Gκ(ρ)−

(
E +m

2λ
+
Zα

ρ

)
Fκ(ρ) = 0 (B.13)

dFκ(ρ)

dρ
− κ

ρ
Fκ(ρ) +

(
E −m

2λ
+
Zα

ρ

)
Gκ(ρ) = 0 (B.14)

より

d2Gκ(ρ)

dρ2
= −E

2 −m2

4λ2
Gκ(ρ) =

1

4
Gκ(ρ) ,

d2Fκ(ρ)

dρ2
=

1

4
Fκ(ρ) (B.15)
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となる。よって無限遠では Gκ(ρ), Fκ(ρ) ∼ e±ρ/2 と振る舞う。そして無限遠で発散しないために以降

の計算では Gκ(ρ), Fκ(ρ) ∼ eρ/2 を選ぶ。従って適当な関数 ϕ1(r), ϕ2(r)を用いて波動関数を

Gκ(ρ) =
√
m+ Ee−ρ/2[ϕ1(ρ) + ϕ2(ρ)] (B.16)

Fκ(ρ) =
√
m− Ee−ρ/2[ϕ1(ρ)− ϕ2(ρ)] (B.17)

と表す。これを (B.13)(B.14)式に代入することにより

dϕ1(ρ)

dρ
=

(
1− ZαE

λρ

)
ϕ1(ρ)−

(
κ

ρ
+
Zαm

λρ

)
ϕ2(ρ) (B.18)

dϕ2(ρ)

dρ
=

(
−κ
ρ
+
Zαm

λρ

)
ϕ1(ρ) +

ZαE

λρ
ϕ2(ρ) (B.19)

となる。ϕ1(ρ), ϕ2(ρ)の冪級数展開を考えると、最低次数の γ を用いて

ϕ1(ρ) = ργ
∞∑
i=0

αiρ
i, ϕ2(ρ) = ργ

∞∑
i=0

βiρ
i (B.20)

と書くことが出来る。係数 αi, βi 求めるために、これを (B.18)(B.19) 式に代入して ρ の係数で比較す

れば

(i+ γ)αi = αi−1 −
ZαE

λ
αi −

(
κ+

Zαm

λ

)
βi (B.21)

(i+ γ)βi =

(
−κ+

Zαm

λ

)
αi +

ZαE

λ
βi (B.22)

を得る。これを αi, βi について解くと

αi =
(1− n′)(2− n′) · · · (i− n′)

i!(2γ + 1)(2γ + 2) · · · (2γ + i)
α0 (B.23)

βi = (−1)i+1 n′(n′ − 1) · · · (n′ − i+ 1)

i!(2γ + 1)(2γ + 2) · · · (2γ + i)
β0 (B.24)

となる。ここで n′ は次のように定義される数である。

n′ =
ZαE

λ
− γ (B.25)

よって ϕ1, ϕ2 に対する冪級数展開 (B.20)式は合流型超幾何関数の冪級数展開

1F1(a, b, z) = 1 +
a

b
z +

a(a+ 1)z2

b(b+ 1)2!
+ · · · (B.26)

を用いて

ϕ1(ρ) = α0ρ
γ
1F1(1− n′, 2γ + 1; ρ) (B.27)
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ϕ2(ρ) = β0ρ
γ
1F1(−n′, 2γ + 1; ρ)

=

(
κ− Zαm/λ

n′

)
α01F1(−n′, 2γ + 1; ρ) (B.28)

と表される。また、波動関数の規格化のため ϕ1, ϕ2 は有限次元の多項式でなければならない。したがっ

て n′ には非負の整数であるという制限が付く。そこで主量子数を次のように定義する。

n ≡ n′ + |κ|, n = 1, 2, 3 · · · (B.29)

(B.25)式および (B.11)(B.12)式からエネルギー固有値 E は

E = m

1 +( Zα

n− |κ|+
√
κ2 − (Zα)2

)2
−1/2

(B.30)

となる。最後に、規格化条件

∫ ∞

0

dr[G2
κ(r) + F 2

κ (r)] = 1 (B.31)

を適用して規格化することで点電荷 Colombポテンシャル (V (r) = Zα/r)が存在するときの動径方向の

Dirac波動関数は(
GPC

κ (r)
FPC
κ (r)

)
=

±1

Γ(2γ + 1)

√
2γ5(m± E)Γ(2γ + n′ + 1)

m2Zα(mZα− λκ)n′!
(2λr)γ−1re−λr

×
[(

mZα

λ
− κ

)
1F1(−n′, 2γ + 1; 2λr)∓ n′11F1(1− n′, 2γ + 2; 2λr)

]
(B.32)

B.1.2 原子核 Coulombポテンシャルに束縛されたミューオンの波動関数

章の始めでも述べたように無限遠では点電荷の Coulombポテンシャルに対する解 GPC
κ (r), FPC

κ (r)に

漸近する。そこでこの微分方程式を初期値

Gκ(rini) = GPC
κ (rini), F

PC
κ (rini) = FPC

κ (rini) (B.33)

として無限遠から原点に向けて 4次の Runge-Kutta法を用いて解く。ここで波動関数が二重可積分であ

るために原点で波動関数は境界条件として

G0 ≡ Gκ(0) = 0, F0 ≡ Fκ(0) = 0 (B.34)

を満たさなければならず、この式を満たすためには適当なエネルギー E を与えて微分方程式を解かなけ

ればならない。したがって E の値を変えながら微分方程式を解いていき

G0(E) = 0, F0(E) = 0 (B.35)

となるような E を見つける必要がある。具体的には二分探索によって G0(E), F0(E)のゼロ点を求める。

二分探索によって得られたエネルギー E が束縛状態の固有エネルギーである。

最後に固有エネルギー E で微分方程式をといて得られた波動関数 Gκ(r), Fκ(r)を規格化条件∫ ∞

0

dr[G2
κ(r) + F 2

κ (r)] = 1 (B.36)

を満たすように規格化する。
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B.2 電子の散乱状態の波動関数

散乱状態の波動関数の数値計算を行うためには点電荷 Coulomb が存在する Dirac 方程式 (B.4)(B.5)

式の原点で正則な解 gregκ (r), f regκ (r) と原点で非正則な解 girrκ (r), f irrκ (r) が必要となるため、まずこれら

について導出する。また DIOの始状態の束縛状態ではミューオンが電子のパウリの排他律に影響されず、

1S状態に落ちるため単一の角運動量の固有状態で書き表せる。一方で終状態の散乱状態は角運動量の固

有状態の重ね合わせ (部分波展開)として記述される。そのため部分波展開について説明をし最後に数値

計算方法について解説する。

B.2.1 点電荷 potentialでの波動関数

E > mにおける (B.4)(B.5)式の一般解を求める。p =
√
E2 −m2 に対し、便宜上の変数 x = 2ipr に

よって方程式を書き換える。

dGκ(x)

dx
= −κ

x
Gκ(x)−

(
E +m

2ip
+
Zα

x

)
Fκ(x) (B.37)

dFκ(x)

dx
=
κ

x
Fκ(x)−

(
E −m

2λ
+
Zα

ρ

)
Gκ(ρ) = 0 (B.38)

この方程式の解を

Gκ(x) =
√
E +m[ϕ1(x) + ϕ2(x)], Fκ(x) = i

√
E −m[ϕ1(x)− ϕ2(x)] (B.39)

と表すと、ϕ1(x)と ϕ2(x)に関する方程式は

dϕ1(x)

dx
=

(
1

2
+ i

ZαE

px

)
ϕ1(x)−

(
κ

x
− i

Zαm

px

)
ϕ2(x) (B.40)

dϕ2(x)

dx
= −

(
κ

x
+ i

Zαm

px

)
ϕ1(x)−

(
1

2
+ i

ZαE

px

)
ϕ2(x) (B.41)

ここで、複素共役の ϕ∗1, ϕ
∗
2 に関する微分方程式を考えると、

ϕ1 = ϕ∗2, ϕ2 = ϕ∗1 (B.42)

となっており、したがって Gκ, Fκ は実数である。これを用いて (B.37)(B.38)式を整理すると、ϕ1 に関

する二階微分方程式

d2ϕ1
dx2

+
1

x

dϕ1
dx

−
[
1

4
+

(
1

2
+
iZαE

p

)
1

x
+
γ2

x2

]
ϕ1 = 0 (B.43)

を得る。さらにW = x1/2ϕ1 と置くと

d2W

dx2
−
[
1

4
+

(
1

2
+
iZαE

p

)
1

x
+
γ2 − 1/4

x2

]
W = 0 (B.44)

となる。これはWhittakerの微分方程式として知られ、原点で有限の値を持つ (原点で正則な)解

W = xγ+1/2e−x/2
1F1(γ; 1 + iy, 2γ + 1;x) (B.45)
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と、原点で発散する (原点で非正則な)解

W = x−γ+1/2e−x/2
1F1(−γ; 1 + iy,−2γ + 1;x) (B.46)

の二つの独立解が存在することが知られている。ここで y は

y =
ZαE

p
(B.47)

である。まず原点で正則な解について考えると、ϕ1 は

ϕ1(r) = N(γ + iy)eiη(2p)γϕ(r) (B.48)

と表すことができる。ここで N は規格化定数であり、解の r 依存性をまとめて

ϕ(r) = rγe−ipr
1F1(γ + 1 + iy, 2γ + 1; 2ipr) (B.49)

と書いた。また、(B.42)式を満たすように位相 η を導入した。ここで (B.40)式を r についての微分方程

式に直し、(B.42)式及び (B.48)式を用いると、ϕ(r)に関する方程式

(γ + iy)eiη(2p)γ
dϕ(r)

dr
= i

(
p+

ZαE

pr

)
(γ + iy)eiη(2p)γϕ∗(r)

+

(
−κ
r
+ i

Zαm

pr

)
(γ − iy)e−iη(2p)γϕ∗(r) (B.50)

が得られる。これを整理すると、η に関する条件式は

e−2iη = −γ + iy

γ − iy

r

κ− iym/E

[
dϕ(r)

dr
− ip

(
1 +

y

pr

)
ϕ(r)

]
1

ϕ∗
(B.51)

となる。さらに、合流型超幾何関数の性質より

dϕ(r)

dr
− ip

(
1 +

y

pr

)
ϕ(r) =

(γ − iy)ϕ∗(r)

r
(B.52)

となるため、位相 η の満たすべき条件式は

e2iη = −κ− iym/E

γ + iy
(B.53)

である。

以上のことから、Dirac方程式の解 G,F は

Gκ(r) = 2N
√
E +m(2pr)γReΦ(r) (B.54)

Fκ(r) = −2N
√
E −m(2pr)γImΦ(r) (B.55)

ただし、

Φ(r) = (γ + iy)ei(−pr+η)
1F1(γ + 1 + iy, 2γ + 1; 2ipr) (B.56)

と表される。便宜上、規格化定数を
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N =
|Γ(γ + iy)|eπy/2

2pΓ(2γ + 1)
(B.57)

と定めると

gregκ (r) = 2
√
E +m(2pr)γ−1 |Γ(γ + iy)|eπy/2

2pΓ(2γ + 1)
ReΦ(r) (B.58)

f regκ (r) = −2
√
E −m(2pr)γ−1 |Γ(γ + iy)|eπy/2

2pΓ(2γ + 1)
ImΦ(r) (B.59)

となり、この解の r → ∞における漸近形は

gregκ (r)　→
√
E +m

cos(pr − (lκ + 1)π/2 + δC)

pr
(B.60)

f regκ (r) → −
√
E −m

sin(pr − (lκ + 1)π/2 + δC)

pr
(B.61)

となる。ここで δC は Coulombポテンシャルによる自由場からの位相のずれに対応しており、

δC = yln(2pr)− argΓ(γ + iy) +
π

2
(lκ + 1− γ) + η (B.62)

で表される。

さて原点で正則でない解についても考える。この解は途中で棄却した (B.46) 式を用いて構築するが、

正則な解と同様の議論から γ → −γ の置き換えをすればよいことが分かる。従ってこの場合の解は

g′κ(r) = 2
√
E +m(2pr)−γ−1 |Γ(−γ + iy)|eπy/2

2pΓ(−2γ + 1)
ReΦ′(r) (B.63)

f ′κ(r) = −2
√
E −m(2pr)−γ−1 |Γ(−γ + iy)|eπy/2

2pΓ(−2γ + 1)
ImΦ′(r) (B.64)

ただし、

Φ′(r) = (−γ + iy)ei(−pr+η′)
1F1(−γ + 1 + iy,−2γ + 1; 2ipr) (B.65)

であり、η′ は

e2iη
′
= −κ− iym/E

−γ + iy
(B.66)

を満たす位相である。r → ∞における漸近形も同様に、δC を次の δ′C で置き換えることにより得られる。

δ′C = yln(2pr)− argΓ(−γ + iy) +
π

2
(lκ + 1 + γ) + η′ (B.67)

本論文の計算では
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∇ ≡ δ′C − δC

= arg

(√
−γ − iy

γ − iy

Γ(γ + iy)

Γ(−γ + iy)

)
+ πγ (B.68)

を用いて

girrκ (r) =
cos∇
sin∇

gregκ (r)− 1

sin∇
g′κ(r) (B.69)

f irrκ (r) =
cos∇
sin∇

f regκ (r)− 1

sin∇
f ′κ(r) (B.70)

と定義した解を用いる。このように定義した girrκ (r), f irrκ (r)の r → ∞での漸近形は、

girrκ (r)　→
√
E +m

sin(pr − (lκ + 1)π/2 + δC)

pr
(B.71)

f irrκ (r) →
√
E −m

cos(pr − (lκ + 1)π/2 + δC)

pr
(B.72)

となる。

B.2.2 数値計算手法

終状態における動径方向の波動関数を求めるため、与えられたエネルギーに対して (3.22)(3.23) 式を

解く。

まず、ポテンシャルは原点で有限の値 V (0) = V0 を持ち、その周りで十分緩やかに変化すると仮定す

ると、原点付近での微分方程式は

dgκ(r)

dr
+

1 + κ

r
gκ(r)− (E +m+ V0)fκ(r) ≃ 0 (B.73)

dfκ(r)

dr
+

1− κ

r
fκ(r)− (E −m+ V0)gκ(r) ≃ 0 (B.74)

したがって Ẽ = E + V0, p̃ =
√
Ẽ2 −m2、N を定数とすれば、原点付近の解は

gκ(r) =
√
Ẽ +mjlκ(p̃r)

fκ(r) =
√
Ẽ −msign(κ)jl−κ

(p̃r) (B.75)

となる。そこで、十分に小さな r = rini における (B.75)式の値を初期値として、Runge-Kutta法により

微分方程式を内側に向かって解くことができる。ただし、解は遠方での境界条件を満たしている必要があ
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り、漸近形 (3.38)式と滑らかに繋がるように係数 N 及び δκ が決まる。十分遠方の点 r = rcon において

Wronskian

Wg(δκ) =
g′κ(rcon)

gκ(rcon)
− [cos δκg

reg
κ (rcon)− sin δκg

irr
κ (rcon)]

′

cos δκg
reg
κ (rcon)− sin δκgirrκ (rcon)

(B.76)

を定義すれば、W (δκ) = 0をみたすように δκ を定めることができ、

tan δκ =
gregκ (rcon)g

′
κ(rcon)− g′regκ (rcon)gκ(rcon)

girrκ (rcon)g′κ(rcon)− g′irrκ (rcon)gκ(rcon)
(B.77)

を得る。最後に r = rcon で解が漸近形と連続になるように係数 N を求めれば、散乱状態の部分波を得る

ことが出来る。境界条件を課す点 rcon は Cooulomb potentialが点電荷のものとみなせる点を選べばよ

く、特に原子核の半径 Rの一様電荷分布の場合ならば rcon = Rとすればよい。



42

Appendix C

DIO

C.1 DIO崩壊率

ミューオン原子中でのミューオンの崩壊 µ− → e− + ν̄e + νµ に関わるラグランジアンは

L(x) = −GF√
2
ψ̄eγλ(1− γ5)ψνe

ψ̄νµ
γλ(1− γ5)ψµ + h.c. (C.1)

ここで GF はフェルミ結合定数、ψa 　は粒子 a(a = µ, e, νµ, νe)の場の演算子を表す。ミューオン、電

子の波動関数がポテンシャルの影響を受ける一方でニュートリノの波動関数は真空中での崩壊と同じ平面

波の波動関数を用いる。Fierz変換を行い

L(x) = −GF√
2
ψ̄eγλ(1− γ5)ψµψ̄νµγ

λ(1− γ5)ψνe + h.c. (C.2)

とラグランジアンを書き直すことでミューオン-電子に関する部分とニュートリノに関する部分に分割

すると DIOの計算に都合が良くなる。以下ではニュートリノおよび反ニュートリノの質量をゼロと仮定

する。

遷移振幅Mは

M = −GF√
2

∫
d3xψ̄e(x)γλ(1− γ5)ψµ(x)ψ̄νµ(x)γ

λ(1− γ5)ψνe(x)

= −GF√
2

∫
d3xei(pνµ+pν̄e )·xψ̄e(x)γλ(1− γ5)ψµ(x)ū(pνµ

, sνµ
)γλ(1− γ5)v(pνe

, sνe
)　

= −GF√
2
Jλ(pνµ

+ pν̄e
)ū(pνµ

, sνµ
)γλ(1− γ5)v(pνe

, sνe
) (C.3)

ここで 2行目では、Diracスピノール u(p, s), v(p, s)　を用いてニュートリノの波動関数を

ψν = u(pν , sν)e
−ipν ·x, ψν̄ = v(pν̄ , sν̄)e

ipν̄ ·x (C.4)

で表した。さらに 3行目では、荷電レプトンカレント

Jλ(p) =

∫
d3xe−ip·xψ̄e(x)γλ(1− γ5)ψµ(x) (C.5)
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を用いた。遷移振幅の二乗は

|M|2 =
G2

F

2
Jλ(pνµ + pν̄e)J

†
ρ(pνµ + pν̄e)ū(pνµ , sνµ)γ

λ(1− γ5)v(pνe , sνe)v̄(pνe , sνe)γ
ρ(1− γ5)u(pνµ , sνµ)

(C.6)

となる。DIOの崩壊率は電子のエネルギーを E とすると

PdEdΩe =

1

2

∑
sµ,se

d3qe
(2π)32E

 ∑
sνµ ,sνe

∫
d3pνµd

3pνe

(2π)62p0νµ
2p0νe

 |M|2(2π)δ(p0µ − p0νµ
− p0νe

− E)

=
2G2

F

(2π)8

∑
sµ,se

d3qe
2E

∫
d4pνµ

d4pνe
Jλ(pνµ

+ pν̄e
)J†

ρ(pνµ
+ pν̄e

)δ(p2νµ
)δ(p2νe

)δ(p0µ − p0νµ
− p0νe

− E)

×

1

8

∑
sνµ ,sνe

ū(pνµ , sνµ)γ
λ(1− γ5)v(pνe , sνe)v̄(pνe , sνe)γ

ρ(1− γ5)u(pνµ , sνµ)


=

2G2
F

(2π)8

∑
sµ,se

d3qe
2E

∫
d4pνµd

4pνeJλ(pνµ + pνe)J
†
ρ(pνµ + pνe)δ(p

2
νµ
)δ(p2νe

)δ(p0µ − p0νµ
− p0νe

− E)

×(pλνµ
pρνe

+ pρνµ
pλνe

− pνµ
· pνe

gλρ) (C.7)

ここで、3つ目のイコールではニュートリノの部分について以下のようなスピンの和をとった。∑
sνµ ,sνe

ū(pνµ
, sνµ

)γλ(1− γ5)v(pνe
, sνe

)v̄(pνe
, sνe

)γρ(1− γ5)u(pνµ
, sνµ

)

= Tr
[
p/νµ

γλ(1− γ5)p/νe
γρ(1− γ5)

]
= 8(pνµ)σ(pνe)τ (g

σλgτρ + gσρgτλ − gστgλρ + iϵσλτρ) (C.8)

さて、変数変換

k = pνµ
+ pνe

, k′ = pνµ
− pνe

(C.9)

を行うことにより崩壊率は

PdEdΩe =
G2

F

8(2π)8

∑
sµ,se

d3qe
2E

∫
d4kd4k′Jλ(k)J

†
ρ(k)δ(k

2 + k′
2
)δ(k · k′)δ(p0µ − k0 − E)

×
{
2kλkρ − 2k′

λ
k′

ρ − (k2 − k′
2
)gλρ

}
(C.10)

と表せる。

ニュートリノの運動量に関する積分のうち、k′ の積分の抜き出して

Iλρ(k) =

∫
d4k′δ(k2 + k′

2
)δ(k · k′)

{
2kλkρ − 2k′

λ
k′

ρ − (k2 − k′
2
)gλρ

}
(C.11)

とおくと、ローレンツ共変性より Iλρ(k)は 2階テンソル

Iλρ(k) = Agλρ +Bkλkρ (C.12)
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の形で表すことができる。さらに、係数 A,B を求めるため以下の計算を行う。

gλρI
λρ(k) = 4A+Bk2

=

∫
d4k′δ(k2 + k′2)δ(k · k′)

{
−2(k2 − k′

2
)
}

=

∫
dk′0d

3k′δ(k20 + k′
2
0 − k′2)δ(k0k

′
0)
{
−2(k20 − k′

2
+ k′2)

}
= −4π · 2k20
= −8πk2 (C.13)

kλkρI
λρ(k) = Ak2 +B(k2)2

=

∫
d4k′δ(k2 + k′2)δ(k · k′)

{
k2(k2 + k′

2 − 2(k · k′)2
}

= 0 (C.14)

ここで、ローレンツ不変性より k = 0となるように系をとった。(4.13)式,(4.14)式から

A =
8π

3
k2, B =

8π

3
(C.15)

よって

Iλρ(k) =
8π

3
(kλkρ − k2gλρ) (C.16)

を得る。以上より、崩壊率は

PdEdΩe =
G2

F

12(2π)7

∑
sµ,se

d3qe
E

∫
d4kδ(p0µ − k0 − E)Jλ(k)J

†
ρ(k)(k

λkρ − k2gλρ)

=
G2

F

12(2π)7

∑
sµ,se

d3qe
E

∫
d3kJλ(k)J

†
ρ(k)(k

λkρ − k2gλρ)

∣∣∣∣∣
k0=p0

µ−E

(C.17)

の形で表すことが出来る。

では次に荷電レプトンカレント

Jλ(p) =

∫
d3xe−ip·xψ̄e(x)γλ(1− γ5)ψµ(x) (C.18)

の計算を行う。前章で説明したように終状態の電子の波動関数は角運動量の固有状態 ψκ,ν
qe (x) で展開

され (部分波展開)、始状態のミューオンの波動関数は 1S状態 ψ
−1,sµ
pµ (x)として以下の形で記述される。

ψqe,se
e (x) =

∑
κ,ν

aκ,ν,se(q̂e)ψ
κ,ν
qe (x)

aκ,ν,se(q̂e) = 4πilκ(lκ, ν − se, 1/2, se|jκ, ν)Y ν−se∗
lκ

(q̂e)e
−iδκ

ψpµ,sµ
µ (x) = asµψ

−1,sµ
pµ

(x)

asµ = e−iδ1 (C.19)
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ここで

ψκ,ν
q (x) =

(
gκq (x)χ

ν
κ(x̂)

ifκq (x)χ
ν
−κ(x̂)

)
(C.20)

また、平面波の部分波展開

eip·x = 4π
∑
L,M

iLjL(kx)Y
M∗
L (k̂)YM

L (x̂) (C.21)

を用いて、これらを用いてレプトンカレント Jλ(k)を求めると、ベクトル成分については

j(k) =

∫
d3xeip·xψ̄e(x)γ(1− γ5)ψµ(x)

= 4π
∑
κ,ν

a∗κ,ν,seasµ

∫
d3x　

∑
L,M

iLjL(kx)ψ̄
κ,ν
qe (x)YM∗

L (k̂)γ(1− γ5)YM
L (x̂)ψ−1,sµ

pµ
(x)

(C.22)

ここで、ベクトル球面調和関数 Y L
JM に関する式∑

J,M

(
Y L∗
JM (k̂)

)
σ
γ · Y L

JM (x̂)

=
∑
JM

∑
mm′

∑
σ′

(L,m, 1, σ)Y m∗
L (k̂)(γ)σ′(L,m′, 1, σ′)Y m′

L (x̂)

=
∑
m

Y m∗
L (k̂)(γ)σY

m
L (x̂) (C.23)

が成り立つことから

J(k) = 4π
∑
κ,ν

a∗κ,ν,seasµ

∫
d3x

∑
L

∑
JM

iLjL(kx)ψ̄
κ,ν
qe (x)Y L∗

JM (k̂)γ · Y L
JM (x̂)(1− γ5)ψ−1,sµ

pµ
(x)

(C.24)

となる。　まず、角度積分

XL
JM =

∫
dΩxψ̄

κ,ν
qe (x)γ · Y L

JM (x̂)(1− γ5)ψ−1,sµ
pµ

(x) (C.25)

について考える。次の記法

⟨κ, ν|O |κ′, ν′⟩ =
∫
dΩχν†

κ (x̂)Ô(x̂)χν′

κ′(x̂) (C.26)

を用いると、この積分は

XL
JM =− gκe g

−1
µ ⟨κ, ν|σ · Y L

JM |−1, sµ⟩ − fκe f
−1
µ ⟨−κ, ν|σ · Y L

JM |1, sµ⟩
+ i{gκe f−1

µ ⟨κ, ν|σ · Y L
JM |1, sµ⟩ − fκe g

−1
µ ⟨−κ, ν|σ · Y L

JM |−1, sµ⟩} (C.27)

と表すことができ、Wigner-Eckart定理

⟨κ, ν|σ · Y L
JM |κ′, ν′⟩ = 1√

2jκ + 1
(jκ′ , ν′, J,M |jκ, ν) ⟨κ| |Y L

J | |κ′⟩ (C.28)
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及び換算行列要素

⟨κ| |Y L
J | |κ′⟩ =

√
(2jκ + 1)(2jκ′ + 1)

4π
(−1)L+1+κ(jκ, 1/2, jκ′ ,−1/2|J, 0)V LS

J (κ, κ′)
1 + (−1)lκ+lκ′+L

2
(C.29)

V LS
J (κ, κ′) ≡


δLJ (S = 0)

(J − κ− κ′)/
√
J(2J + 1) (S = 1, J = L+ 1)

(−κ+ κ′)/
√
J(J + 1) (S = 1, J = L)

−(J + 1 + κ+ κ′)/
√

(J + 1)(2J + 1) (S = 1, J = L− 1)

(C.30)

を用いれば、

XL
JM　 = 　

1√
2π

(jκ, 1/2, 1/2,−1/2|J, 0)(1/2, sµ, J,M |jκ, ν)(−1)L+1+κ

×

[
1 + (−1)lκ+L

2
{−gκe g−1

µ V L1
J (κ,−1)− fκe f

−1
µ V L1

J (−κ,+1)}

+
1 + (−1)lκ+L+1

2
{gκe f−1

µ V L1
J (κ,+1)− fκe g

−1
µ V L1

J (−κ,−1)}

]

=
1√
4π

(1/2, sµ, J,M |jκ, ν)(−1)L+jκ+1/2

×

[
1 + (−1)lκ+L

2
{gκe g−1

µ V L1
J (κ,−1) + fκe f

−1
µ V L1

J (−κ,+1)}

− i
1 + (−1)lκ+L+1

2
{gκe f−1

µ V L1
J (κ,+1)− fκe g

−1
µ V L1

J (−κ,−1)}

]
(C.31)

となる。よって

J(k) =
√
4π
∑
κ,ν

a∗κ,ν,seasµ

∫
x2dx

∑
L

∑
JM

iLjL(kx)(−1)L+lκ+1/2Y L∗
JM (k̂)

× (1/2, sµ, J,M |jκ, ν)

×

[
1 + (−1)lκ+L

2
{−gκe g−1

µ V L1
J (κ,−1)− fκe f

−1
µ V L1

J (−κ,+1)}

+
1 + (−1)lκ+L+1

2
{gκe f−1

µ V L1
J (κ,+1)− fκe g

−1
µ V L1

J (−κ,−1)}

]
(C.32)

を得る。角運動量 Lの取りうる値は J, J + 1, J − 1であることを考慮して、

J(k) =
√
4π
∑
κ,ν

a∗κ,ν,seasµ
∑
JM

(−1)L+lκ−1/2(1/2, sµ, J,M |jκ, ν)

×
[
− iJY J∗

JM (k̂)S0
jκ/
√
J(J + 1)

+ iJ+1Y J+1∗
JM (k̂)S+1

jκ
/
√

(J + 1)(2J + 1)

+ iJ−1Y J−1∗
JM (k̂)S−1

jκ
/
√
J(2J + 1)

]
(C.33)
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となる。同様にしてレプトンカレントの第 0成分は

J0(k) = 4π
∑
κ,ν

a∗κ,ν,seasµ

∫
d3x

∑
JM

iLjL(kx)ψ̄
κ,ν
qe (x)YM∗

L (k̂)γ0(1− γ5)YM
L (x̂)ψ−1,sµ(x)

= 4π
∑
κ,ν

a∗κ,ν,seasµ

∫
x2dx

∑
LM

iLjL(kx)Y
M∗
L (k̂)

1√
4π

(1/2, sµ, L,M |jκ, ν)(−1)L+1+κ

×
[
1 + (−1)lκ+L

2
(gκe g

−1
µ + fκe f

−1
µ )− i

1 + (−1)lκ+1+L

2
(gκe f

−1
µ − fκe g

−1
µ )

]
=

√
4π
∑
κ,ν

a∗κ,ν,seasµ
∑
JM

(−1)J+jκ−1/2(1/2, sµ, J,M |lκ, ν)iJYM∗
J (k̂)Sjκ (C.34)

となる。これらの結果は次の S+1
jκ
, S0

jκ
, S−1

jκ
, Sjκ を使って表した。

S+1
jκ

=
1

2

∫
x2dxjJ+1(kx)

[
{1 + (−1)lκ+L+1}{(κ+ J)gκe (x)g

−1
µ (x)− (κ− 2− J)fκe (x)f

−1
µ (x)}

− i{1 + (−1)lκ+J}{(κ+ 2 + J)gκe (x)f
−1
µ (x) + (κ− J)fκe (x)g

−1
µ (x)}

]
S0
jκ =

1

2

∫
x2dxjJ(kx)

[
{1 + (−1)lκ+L}(κ+ 1){gκe (x)g−1

µ (x)− fκe (x)f
−1
µ (x)}

− i{1 + (−1)lκ+J+1}(κ− 1){gκe (x)f−1
µ (x) + fκe (x)g

−1
µ (x)}

]
S−1
jκ

=
1

2

∫
x2dxjJ−1(kx)

[
{1 + (−1)lκ+L+1}{(κ− 1− J)gκe (x)g

−1
µ (x)− (κ− 1 + J)fκe (x)f

−1
µ (x)}

− i{1 + (−1)lκ+J}{(κ+ 1− J)gκe (x)f
−1
µ (x) + (κ+ 1 + J)fκe (x)g

−1
µ (x)}

]
Sjκ =

1

2

∫
x2dxjJ−1(kx)

[
{1 + (−1)lκ+J}{gκe (x)g−1

µ (x) + fκe (x)f
−1
µ (x)}

− i{1 + (−1)lκ+J+1}{gκe (x)f−1
µ (x)− fκe (x)g

−1
µ (x)}

]
(C.35)

さて、これらレプトンカレント Jλ(k)を代入して、DIOの崩壊率

PdEdΩe =
G2

F

12(2π)7
d3qe
E

∑
sµ,se

∫
d3kJλ(k)J

∗
ρ (k)(k

λkρ − k2gλρ)

∣∣∣∣∣
k0=p0

µ−E

(C.36)

を計算していく。

まず運動量 qe,kに関する角度積分を実行する。∑
sµ,se

∫
dΩqe

∫
dΩk(|J · k|2 − k2|J |2)

　 =
∑
sµ,se

∫
dΩqe

∫
dΩk[−k0(J0J∗ + J∗

0J) · k + |J · k|2 + |J0|2k2 + (k20 − k2)|J |2] (C.37)

最初に、Ωqe の積分を含む部分は∑
se

∫
dΩqea

∗
κ,ν,se(q̂e)aκ′,ν′,se(q̂e) = (4π)2

∑
se

∫
dΩ(−1)lκilκ

× (lκ, ν − se, 1/2, se|jκ, ν)(lκ′ , ν′ − se, 1/2, se|jκ′ , ν′)

× Y ν−se
lκ

(q̂e)Y
ν′−se∗
lκ′ (q̂e)e

i(δκ−δκ′ )

= (4π)2δκκ′δνν′ (C.38)
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となる。そして球面調和関数を含んだ Ωk の積分は∫
dΩkY

M∗
J′ (k̂)Y L

JM (k̂) · k̂ =

∫
dΩk

∑
m,σ

YM ′∗
J′ (k̂)(L,m, 1, σ|J,M)YM

L (k̂)δσ0

= (L,M ′, 1, 0|J,M)δLJ ′ (C.39)

∫
dΩkY

L′∗
J′M ′(k̂) · k̂Y L

JM (k̂) · k̂ =
∑
m

(L,m, 1, 0|J ′,M ′)(L,m, 1, 0|J,M)δLL′δMM ′ (C.40)∫
dΩkY

L′∗
J′M ′(k̂) · Y L

JM (k̂) = δLL′δJJ ′δMM ′ (C.41)

これらを用いると、角度積分は (C.37)は∑
sµ,se

∫
dΩqe

∫
dΩk(|J · k|2 − k2|J |2)

= (4π)2
∑
κ,J

(2jκ + 1)

[
− k0k

2J + 1

{
Sjκ(iS

+1∗
jκ

+ iS−1∗
jκ

) + c.c.
}
ｃ+ k2

{
|Sjκ |2 +

|S+1
jκ

+ S−1
jκ

|2

(2J + 1)2

}

+ (k20 − k2)

{
|S0

jκ
|2

J(J + 1)
+

|S+1
jκ

|2

(J + 1)(2J + 1)
+

|S−1
jκ

|2

J(2J + 1)

}]
(C.42)

したがって (C.36)式は

4πPdE =
8G2

F qedE

192π4

∫ W−E

0

k2dk
∑
J,κ

(2jκ + 1)

×

[
− (W − E)k

2J + 1

{
Sjκ(iS

+1∗
jκ

+ iS−1∗
jκ

) + c.c.
}

+k2

{
|Sjκ |2 +

|S+1
jκ

+ S−1
jκ

|2

(2J + 1)2

}

+{(W − E)2 − k2}

{
|S0

jκ
|2

J(J + 1)
+

|S+1
jκ

|2

(J + 1)(2J + 1)
+

|S−1
jκ

|2

J(2J + 1)

}]
(C.43)

となる。ここで W は束縛されたミューオンのエネルギーである。崩壊によって出てくる電子のエネル

ギーは E : 0 ∼ W をとるためWは崩壊によって出てくる電子のエネルギースペクトルの end pointに

なる。最後に、自由ミューオンの崩壊率 Γ0 = G2
Fm

5
µ/192π

3 で規格化すると、崩壊率のエネルギースペ

クトルは

1

Γ0

dΓ

dE
=

1

Γ0
4πP (E)

=
8qe
πm5

µ

∫ W−E

0

k2dk
∑
J,κ

(2jκ + 1)

×

[
− (W − E)k

2J + 1

{
Sjκ(iS

+1∗
jκ

+ iS−1∗
jκ

) + c.c.
}

+k2

{
|Sjκ |2 +

|S+1
jκ

+ S−1
jκ

|2

(2J + 1)2

}

+{(W − E)2 − k2}

{
|S0

jκ
|2

J(J + 1)
+

|S+1
jκ

|2

(J + 1)(2J + 1)
+

|S−1
jκ

|2

J(2J + 1)

}]
(C.44)
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最後に、原子核の反跳の影響を考える。原子核も含めた運動量保存則は

E + Eν + EN = mµ −Bµ

qe + Pν + PN = 0 (C.45)

となる。ここで Eν ,Pν はニュートリノのエネルギーと運動量、EN ,PN は原子核のエネルギーと運動

量である。ここでニュートリノがほとんど運動量を持たない end point付近では

E ≃ EN ≫ Eν　

|qe| ≃ |PN | ≫ |Pν | (C.46)

より

EN =
P 2

N

2mN
≃ q2

e

2mN

=
E2

2mN
(C.47)

となるので電子のエネルギースペクトルの end pointは

mµ −Bµ → mµ −Bµ − EN

≃ mµ −Bµ − E2

2mN
(C.48)

のように修正される。
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Appendix D

部分波展開

自由状態の波動関数は系に空間の並進対称性が存在するため運動量の固有状態として展開することがで

きる。しかしポテンシャルが存在する場合並進対称性は存在しなくなり運動量の固有状態では展開できな

い。しかしポテンシャルが球対称ポテンシャルの場合系には角度方向の回転対称性が残るため角運動量の

固有状態として展開することが出来る。それが部分波展開である。

まず球対象ポテンシャルでのシュレディンガー方程式(
− ℏ2

2m
∇2 + V (r)

)
ψ(r) = Eψ(r) (D.1)

を考える。極座標でハミルトニアンは

H = − ℏ2

2m

[
1

r

∂2

∂r2
+

1

r2

[
1

sin2 θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂

∂ϕ

]]
+ V (r) (D.2)

ここで角運動量演算子の二乗

L2 = −ℏ2
[

1

sin2 θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin2 θ

∂

∂ϕ

]
(D.3)

を用いることで

H = − ℏ2

2m

[
1

r2
∂2

∂r2
− L2

ℏ2r2

]
+ V (r) (D.4)

と表すことが出来る。これより

[H,L2] = 0, [H,Lz] = 0 (D.5)

が成り立っているため波動関数は H,L2, Lz の固有関数で展開できることが分かる。

ψ(r) =

∞∑
l=0

+l∑
m=−l

clm(k)Rlm(r)Ylm(θ, ϕ) (D.6)

ここで Ylm(θ, ϕ)は球面調和関数である。また lは軌道角運動量量子数、mは磁気量子数で

L2Ylm = ℏ2l(l + 1)Ylm (D.7)

LzYlm = ℏmYlm (D.8)
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今この式を代入する事により

− ℏ2

2m

[
1

r2
∂2

∂r2
− l(l + 1)

r2

]
Rl(r) + V (r)Rl(r) = ERl(r) (D.9)

この式はm依存性がないので Rlm(r) → Rl(r)とした。

ul(r) = rRl(r) (D.10)

とすると [
d2

dr2
+ k2 − l(l + 1)

r
− U(r)

]
ul(r) = 0 (D.11)

となる。ここでまず U(r) = 0の場合を考えその時の波動関数を yl(r)とする。[
d2

dr2
+ k2 − l(l + 1)

r

]
yl(r) = 0 (D.12)

さらに ρ = kr

fl(ρ) =
yl
ρ

(D.13)

とすると [
d2

dρ2
+

2

ρ

d2

dρ
+

(
1− l(l + 1)

ρ

)]
fl(ρ) = 0 (D.14)

この解は球ベッセル関数 jl(kr)と球ノイマン関数 nl(kr)の和として書くことが出来る。よって

yl(r) = kr
[
C

(1)
l (k)jl(kr) + C

(2)
l (k)nl(kr)

]
(D.15)

次に ul(r)は r → ∞で yl(r)となるはずであるので

ul(r) =→r→∞

[
C

(1)
l (k)jl(kr) + C

(2)
l (k)nl(kr)

]
(D.16)

とかけるが球ベッセル関数 jl(x)と球ノイマン関数 nl(x)は r → ∞で

jl(x) →x→∞
1

x
sin (x− 1

2
lπ) (D.17)

nl(x) →x→∞ − 1

x
cos (x− 1

2
lπ) (D.18)

より

ul(r) =→r→∞ Al(k) sin [kr −
1

2
lπ + δl(k)] (D.19)

とかける。ここで

Al(r) =
{
[C

(1)
l (k)]2 + [C

(2)
l (k)]2

}
(D.20)

tan δl(r) = −
C

(2)
l (k)

C
(1)
l (k)

(D.21)

再び

ψ(r) =

∞∑
l=0

+l∑
m=−l

clm(k)Rl(r)Ylm(θ, ϕ) (D.22)
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に戻って clm(k)の具体形を求める。

今、境界条件で外向波 (内向波)の散乱波 ψ(±)(r)は r → ∞で

ψ(±)(r) →r→∞ A(k)[eikz + f(θ)
e±ikr

r
] (D.23)

ここで平面波 eikz の部分波展開は

eikz =

∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ) (D.24)

となる。ここで Pl(cos θ)はルジャンドル関数である。よって

ψ(±)(r) →r→∞ A(k)[

∞∑
l=0

(2l + 1)il
sin (kr − 1

2 lπ)

kr
Pl(cos θ) + f(θ)

e±ikr

r
] (D.25)

Pl(cos θ) =

(
4π

2l + 1

) 1
2

Yl0(θ) (D.26)

ψ(±)(r) →r→∞ A(k)

{ ∞∑
l=0

+l∑
m=−l

[4π(2l + 1)]
1
2 il

exp i(kr − 1
2 lπ)− exp−i(kr − 1

2 lπ)

2ikr
Ylm(θ, ϕ)δm0 + f(θ)

e±ikr

r

}
(D.27)

ψ(±)(r) =

∞∑
l=0

+l∑
m=−l

c
(±)
lm (k)Rl(r)Ylm(θ, ϕ)

=

∞∑
l=0

+l∑
m=−l

c
(±)
lm (k)

ul(r)

r
Ylm(θ, ϕ) (D.28)

ここで境界条件は c
(±)
lm (k)に入る。(すぐ後でわかる)

ψ(±)(r) →r→∞

∞∑
l=0

+l∑
m=−l

c
(±)
lm (k)Al(k)

exp {i(kr − 1
2 lπ + δl(k))} − exp {−i(kr − 1

2 lπ + δl(k))}
2ir

Ylm(θ, ϕ)(D.29)

これと前式を比較することで

c±lm(k) =
A(k)

kAl(k)
[4π(2l + 1)]

1
2 il exp (±iδl)δm0 (D.30)

より

ψ(±)(r) =

∞∑
l=0

+l∑
m=−l

A(k)

kAl(k)
[4π(2l + 1)]

1
2 il exp (±iδl)δm0Rl(r)Ylm(θ, ϕ)

= A(k)

∞∑
l=0

(2l + 1)il
exp (±iδl)
Al(k)

ul(r)

kr
Pl(cos θ) (D.31)

これを平面波の部分波展開 ()式と比較すると、球対称ポテンシャルによる影響は動径方向の波動関数

そして波動関数全体の位相のズレとして現れることが分かる。

さらに境界条件として外向波 (内向波)をとったときそのズレの符号が +(-)となることが分かった。
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Appendix E

クーロンポテンシャル

この章では遠距離相互作用であり、また解析的に計算が可能なクーロン相互作用についてまず解析的な

解を考え、そして部分波展開を見る。

E.1 クーロンポテンシャルの解析式

始めにシュレディンガー方程式を双曲線座標 (ξ, η, ϕ) によって表す。それぞれデカルト座標 (x, y, z)

と

x =
√
ξη cosϕ

y =
√
ξη sinϕ

z =
1

2
(ξ − η)

ξ = r + z = r(1 + cosϕ)

η = r − z = r(1− cosϕ)

ϕ = tan−1 (y/x) (E.1)

双曲線座標での ∇2 は

∇2　 =
4

ξ + η

[
∂

∂ξ
(ξ
∂

∂ξ
) +

∂

∂η
(η

∂

∂η
)

]
+

1

ξη

∂2

∂ϕ2
(E.2)

となる。したがって双曲線座標でのシュレディンガー方程式は

− ℏ2

2m

{
4

ξ + η

[
∂

∂ξ
(ξ
∂

∂ξ
) +

∂

∂η
(η

∂

∂η
)

]
ψc +

1

ξη

∂2

∂ϕ2

}
+

2Z1Z2e
2

ξ + η
ψc = Eψc (E.3)

となる。球対称ポテンシャルでの波動関数は方位角 ψ の回転対称性を持っているため波動関数 ψc は

ψc = f(ξ)g(η) (E.4)

と変数分離をおこなうと f(ξ), g(η)はそれぞれ

d

dξ
(ξ
df

dξ
) + (

1

4
k2ξ − ν1)f = 0

d

dη
(η
dg

dη
) + (

1

4
k2η − ν2)g = 0 (E.5)

ここで ν1, ν2 は
ν1 + ν2 = γk (E.6)
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γ = mZ1Z2e
2/ℏ2k (E.7)

f(ξ), g(η)の形を考える。平面波 eikz と球面波 eikr は

exp (ikz) = exp {1
2
ik(ξ − η)}

exp (ikr) = exp {1
2
ik(ξ + η)} (E.8)

となる。したがって

f(ξ) = exp (
1

2
ikξ) (E.9)

とし ()式に代入すると ν1 = 1
2k となることが分かる。したがって g(η)の満たす方程式は

d

dη
(η
dg

dη
) +

1

4
k2g − (γk − 1

2
ik)g = 0 (E.10)

となる。ここで g(η) = exp {− 1
2 ikη}h(η)とすると h(η)の満たす方程式は

η
d2h

dη2
+ (1− ikη)

dh

dη
− γkh = 0 (E.11)

この方程式の原点で正則な解は第一種超幾何関数 1F1 によって

h(η) = C1F1(−iγ; 1; ikη) (E.12)

と表される。(C は定数。)したがって

ψc = Ceikz1F1(−iγ; 1; ik(r − z)) (E.13)

さて、この波動関数の無限遠 |r − z| → ∞での漸近形 (導出は付録で行う)は

ψc → C
exp ( 12πγ)

Γ(1 + iγ)

[
exp {i[kz + γ ln kr(1− cos θ)]}

(
1 +

γ2

ikr(1− cos θ)
+ . . .

)]
+ C

exp ( 12πγ)

Γ(1 + iγ)

[
fc(θ)

exp {i(kr − γ ln 2kr)}
r

(
1 +

(1 + iγ)2

ikr(1− cos θ)
+ . . .

)]
(E.14)

ここで Γ(x)はガンマ関数であり

fc(θ) = −γ exp (2iσ0)
−iγ ln(sin2 1

2θ)

2k sin2 1
2θ

(E.15)

σ0 = argΓ(1 + iγ) (E.16)

である。

遠距離相互作用の場合、平面波 eikz、球面波 eikr 共に位相が対数的な歪みを受けることが分かる。特

に平面波の歪曲から、近距離相互作用との違いとして入射波にも影響を与えることが遠距離相互作用の場

合の大きな特徴となる。
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Appendix F

リップマン-シュインガー方程式

F.1 積分方程式としてのシュレディンガー方程式
2m
ℏ2 = 1としたシュレディンガー方程式[

∇2 + k2
]
ψ(r) = V (r)ψ(r) (F.1)

の解 ψ(r)は自由な波動関数 Φ(r)とグリーン関数
∫
G0(r, r

′)を用いて

ψ(r) = Φ(r) +

∫
G0(r, r

′)V (r′)ψ(r′)dr′ (F.2)

で表すことが出来る。ここで Φ(r)と
∫
G0(r, r

′)は以下の式を満たしている

[
∇2 + k2

]
Φ(r) = 0 (F.3)

[
∇2 + k2

]
G0(r, r

′) = δ(r − r′) (F.4)

このグリーン関数には次の式を満たす
∫
G′(r, r′)の自由度が存在するため境界条件を一つ入れる必要

がある。

[
∇2 + k2

]
G′(r, r′) = 0 (F.5)

境界条件には外向波と内向波の境界条件が存在しそれぞれの境界条件でのグリーン関数は

G
(+)
0 (r, r′) = − 1

4π

exp [+ik|r − r′|]
|r − r′|

(F.6)

G
(−)
0 (r, r′) = − 1

4π

exp [−ik|r − r′|]
|r − r′|

(F.7)

となる。ここで +は外向波の境界条件、−は内向波の境界条件であることを表している。またこの式
の導出は付録に載せている。

グリーン関数に境界条件を課すことで (F.2)式は ψ(r)についての積分方程式

ψ(±)(r) = Φ(r) +

∫
G(±)(r, r′)V (r′)Φ(r′)dr′ (F.8)

となる。この式はリップマン-シュインガー方程式と呼ばれる。
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F.2 リップマン-シュインガー方程式のコンパクト解

(F.8)リップマン-シュインガー方程式の解の形を求めるために再びシュレディンガー方程式[
∇2 + k2

]
ψ(r) = V (r)ψ(r) (F.9)

を考える。波動関数 ψ(r)は (F.3)を満たす自由な波動関数 Φ(r)と

[
∇2 + k2

]
ψ(±)
sc (r) = V (r)ψ(±)

sc (r) (F.10)

を満たす散乱波 ψ
(±)
sc (r)の和として書くことが出来る

ψ(±)(r) = Φ(r) + ψ(±)
sc (r) (F.11)

ここで再び (±)は外向波・内向波を表す。これを用いて (F.1)は[
∇2 + k2 − V (r)

]
ψ(±)
sc (r) = V (r)Φ(r) (F.12)

と変形できる。この式を満たす散乱波 ψ
(±)
sc (r)は[

∇2 + k2 − V (r)
]
G(±)(r, r′) = δ(r − r′) (F.13)

を満たすグリーン関数 G(±)(r, r′)を用いて

ψ(±)
sc (r) =

∫
G(±)(r, r′)V (r′)Φ(r′)dr′ (F.14)

で表すことが出来る。従って波動関数 ψ(±)(r)は

ψ(±)(r) = Φ(r) +

∫
G(±)(r, r′)V (r′)Φ(r′)dr′ (F.15)

と書くことが出来る。これがリップマン-シュインガー方程式 ((F.8)式)のコンパクト解である。

ブラケット記号を用いるとリップマン-シュインガー方程式 (F.8)式は

|ψ(±)⟩ = |Φ⟩+G
(±)
0 V |ψ(±)⟩ (F.16)

と書けそのコンパクト解 (F.15)式は

|ψ(±)⟩ = |Φ⟩+G(±)V |Φ⟩ (F.17)

となる。
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Appendix G

相互作用描像

ここでは相互作用描像と朝永-シュインガー方程式を紹介する。

まずシュレディンガー描像での波動関数を |ψ(t)⟩s とし物理量の演算子を Os とする。波動関数の時間

発展はシュレディンガー方程式は

iℏ
d

dt
|ψ(t)⟩s = H(t) |ψ(t)⟩s (G.1)

ここで
H(t) = s⟨ψ(t)|Hs|ψ(t)⟩s (G.2)

である。相互作用描像での波動関数、物理量の演算子は

|ψ(t)⟩s = exp

(
H0t

iℏ

)
|ψ(t)⟩I (G.3)

OI = exp

(
−H0t

iℏ

)
Os exp

(
H0t

ih

)
(G.4)

で定義する。(G.1)式に (G.3)を代入すると

iℏ
d

dt
exp

(
H0t

iℏ

)
|ψ(t)⟩I = H(t) exp

(
H0t

iℏ

)
|ψ(t)⟩I (G.5)

ここで左辺は

H0 exp

(
H0t

i
ℏ
)
|ψ(t)⟩I + iℏ exp

(
H0t

iℏ

)
d

dt
|ψ(t)⟩I (G.6)

となり右辺のハミルトニアンは
H(t) = H0 + V (t) (G.7)

で与えられる。したがって

iℏ
d

dt
|ψ(t)⟩I = VI |ψ(t)⟩I (G.8)

これが朝永-シュインガー方程式である。
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Appendix H

時間発展演算子と境界条件

この章では時間発展演算子についての説明と外向波内向波の持つ時間的な性質について説明する。なお

この章より相互作用描像での演算子や波動関数の添え字を外す。まずシュレディンガー描像での時間発展

演算子の形を考える。時間発展演算子を次のように定義する。

ψs(t) = Us(t, t0)ψs(t0) (H.1)

この演算子は以下の性質を持つ。

Us(t, t) = I (H.2)

Us(t, t
′) = Us(t, t

′′)Us(t
′′, t′) (H.3)

U−1s(t, t
′) = Us(t

′, t) (H.4)

またシュレディンガー方程式

iℏ
∂

∂t
ψs(t) = Hsψs(t) (H.5)

に (H.1)式を代入すると

iℏ
∂

∂t
Us(t, t0) = HsUs(t, t0) (H.6)

この式と Us(t, t) = I より Us の形は

Us(t, t0) = exp

[
− i

h
Hs(t− t0)

]
(H.7)

と出来ることが分かる。

前章での相互作用描像で時間発展演算子 U(t, t′)を次のように定義する。

ψ(t) = U(t, t′)ψ(t′) (H.8)

これを朝永-シュインガー方程式に代入する事で

i
∂

∂t
U(t, t′)ψ(t′) = V (t)U(t, t′)ψ(t′) (H.9)

全ての t′ に対してこの式が成立するため



Appendix H 時間発展演算子と境界条件 59

i
∂

∂t
U(t, t′) = V (t)U(t, t′) (H.10)

ここで初期条件 U(t, t) = I としてこの式の解を考えると

U(t, t′) = I − i

∫ t

t′
V (t1)U(t1, t

′)dt1 (H.11)

となる。また (H.4)式を満たすために

U(t′, t) = I + i

∫ t

t′
U(t′, t1)V (t1)dt1 (H.12)

もしくは、t, t′ を入れ替えることで

U(t′, t) = I + i

∫ t′

t

U(t, t1)V (t1)dt1 (H.13)

また前章のシュレディンガー描像の演算子と相互作用描像の演算子の対応とシュレディンガー描像での

時間発展演算子 (H.7)

U(t, t′) = exp (iH0t) exp (−iHs(t− t′) exp (iH0t
′) (H.14)

但しこの式では t, t′ → ±∞で振動してしまうためこの極限では定義できない。t, t′ = ±∞での時間発
展演算子を作るために次のような関数の極限を考える

lim
t→−∞

F (t) = lim
ϵ→0+

ϵ

∫ 0

−∞
eϵt

′
F (t′)dt′ (H.15)

lim
t→+∞

F (t) = lim
ϵ→0+

ϵ

∫ 0

−∞
e−ϵt′F (t′)dt′ (H.16)

これらの積分を実行することにより

lim
t→−∞

F (t) = lim
ϵ→0+

{
[F (t′)eϵt

′
]0−∞ −

∫ 0

−∞

dF

dt′
eϵt

′
dt′
}

(H.17)

lim
t→+∞

F (t) = lim
ϵ→0+

{
−[F (t′)eϵt

′
]+∞
0 +

∫ 0

−∞

dF

dt′
e−ϵt′dt′

}
(H.18)

従って F (t) が t = ±∞ できちんとした値 F (±∞) を持つのであれば t, ϵ の極限をそれぞれとることに

より

lim
t→−∞

F (t) = 　 F (−∞) (H.19)

lim
t→+∞

F (t) = 　 F (+∞) (H.20)

となる。そして F (t)が t→ ±∞で振動する場合。例えば F (t) = sinαtでは

lim
ϵ→0+

ϵ

∫ 0

−∞
eϵt sin (αt)dt = − lim

ϵ→0+

αϵ

α2 + ϵ2
= 0 (H.21)
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のように 0となるので極限の定義が出来る。

さて、この極限の定義を用いて t → ±∞で自由な波動関数 (すなわちポテンシャルの影響を受けてな

い状態)であるものが t = 0ではポテンシャルの影響を受けている波動関数 ψ である状況を考える。これ

を時間発展演算子で表す。今 ψ(±) を次のように定義する。但しここでは外向波,内向波との関係はない。

|ψ(±)⟩ = U(0,∓∞) |Φ⟩ (H.22)

ここで極限の定義、(??)式より

U(0,∓∞) = lim
t→∓∞

U(0,∓∞)　

= lim
t→∓∞

exp (iHt) exp (−iH0t)

= lim
ϵ→0+

∓ϵ
∫ (∓∞)

0

exp (±ϵt) exp (iHt) exp (−iH0t)dt (H.23)

ここで自由な波動関数 Φが完全系をなすと考えると (H.25)に∑
|Φ⟩ ⟨Φ| = I (H.24)

を代入することで

U(0,∓∞) = lim
ϵ→0+

∓ϵ
∑∫ (∓∞)

0

exp (±ϵt) exp (iHt) |Φ⟩ ⟨Φ| exp (−iH0t)dt

= lim
ϵ→0+

∓ϵ
∑∫ (∓∞)

0

exp (±ϵt) exp (iHt) |Φ⟩ ⟨Φ| exp (−iEt)dt

= lim
ϵ→0+

∑ ±iϵ
E −H±iϵ

|Φ⟩ ⟨Φ| (H.25)

従って (limϵ→0+ を省略して)

|ψ(±)⟩ =
∑ ±iϵ

E −H±iϵ
|Φ⟩

=
1

(E −H±iϵ)
(E −H0 − V + V±iϵ) |Φ⟩

= |Φ⟩+ 1

E −H±iϵ
V |Φ⟩ (H.26)

となる。これはまさに外向波、内向波の境界条件でのリップマン-シュインガー方程式の解の形になっ

ている。つまり外向波 (内向波)は t = ∓∞で自由な波動関数 Φと接続をする関数であるということが分

かった。
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Appendix I

歪曲波

この章では、ポテンシャルが二つ存在する系を考える。ハミルトニアン H は自由ハミルトニアン H0,

と二つのポテンシャル V,W によって
H = H0 + V +W (I.1)

またハミルトニアン H を
H = H0 + V (I.2)

とする。今ハミルトニアン H,H,H0 に対する波動関数を Ψ, χ,Φとする。すなわち

HΨ = EΨ (I.3)

Hχ = Eχ (I.4)

H0Φ = EΦ (I.5)

をそれぞれ満たしている。自由な波動関数 Φがポテンシャル V の影響を受け χへと変化し、その後ポ

テンシャル V の影響によりさらに Ψとなる状況を考える。また Φのことを平面波、χのことを歪曲波、

Ψのことを散乱波と呼ぶことにする。

Ψ,χに対する境界条件を考える。まず歪曲波 χはポテンシャル V の影響によって平面波 Φから変化し

たものなので外向波 χ(+)、内向波 χ(−) はそれぞれ

|χ(±)⟩ = |Φ⟩+ 1

E −H±iϵ
V |Φ⟩ (I.6)

を満たす。次に散乱波 Ψの境界条件を考える。Ψも平面波 Φからポテンシャル V +W の影響によっ

て変化したものと考えることもできるので外向波 Ψ(+)、内向波 Ψ(−) は

|Ψ(±)⟩ = |Φ⟩+ 1

E −H±iϵ
(V +W ) |Φ⟩ (I.7)

となる。それでは散乱波 Ψ(±) と歪曲波 Φ(±) の間の関係を求めるために前式を変形していく。

|Ψ(±)⟩ = |Φ⟩+ 1

E −H±iϵ
(V +W ) |Φ⟩

= |Φ⟩+ 1

E −H0 − V −W±iϵ
(V +W ) |Φ⟩ (I.8)
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ここで演算子 A,B の満たす恒等式

1

A
=

1

A+B
+

1

A
B

1

A+B
(I.9)

で A = E −H0 − V −W±iϵ,B =W とすることで

1

E −H0 − V −W±iϵ
V |Φ⟩ = 1

E −H0 − V±iϵ
V |Φ⟩+ 1

E −H0 − V −W±iϵ
W

1

E −H0 − V±iϵ
V |Φ⟩
(I.10)

となるので、

|Ψ(±)⟩ =
[
|Φ⟩+ 1

E −H0 − V±iϵ
V |Φ⟩

]
+

{
1

E −H0 − V −W±iϵ
W

[
|Φ⟩+ 1

E −H0 − V±iϵ
V |Φ⟩

]}
(I.11)

ここで角括弧の中は (I.6)式より |χ(±)⟩となるので

|Ψ(±)⟩ = |χ(±)⟩+ 1

E −H±iϵ
W |χ(±)⟩ (I.12)
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Appendix J

付録 A

ここでは境界条件を入れたグリーン関数 (F.6),(F.7)式の導出を行う。まず G0(r, r
′)の満たす[

∇2 + k2
]
G0(r, r

′) = δ(r − r′) (J.1)

とデルタ関数の積分表示

δ(r − r′) = (2π)−3

∫
exp [ik′ · (r − r′)] dk′ (J.2)

G0(r, r
′)のフーリエ変換

G0(r, r
′) = (2π)−3

∫
g0(k

′, r′) exp(ik′ · r) (J.3)

より g0(k
′, r′)は

g0(k
′, r′) =

exp(−ik′ · r′)
k2 − k′2

(J.4)

となりグリーン関数 G0(r, r
′)は

G0(r, r
′) = −(2π)−3

∫
exp [ik′ · (r − r′)]

k′2 − k2
dk′ (J.5)

と書くことが出来る。ここでR ≡ r − r′ とし前の式を極座標での積分として

G0(R) = −(2π)−3

∫ ∞

0

dk′k′2
∫ π

0

dθ′ sin θ′
∫ 2π

0

dϕ′
exp ik′R cos θ′

k′2 − k2
(J.6)

この式の角度方向の積分を行うことにより

G0(R) = −(4π2R)−1

∫ +∞

−∞

k′ sin k′R

k′2 − k2
dk′ (J.7)

この積分を実行するために次のように式変形を行う

G0(R) = −(16π2iR)−1

{∫ +∞

−∞
eik

′R

[
1

k′ − k
+

1

k′ + k

]
dk′ −

∫ +∞

−∞
e−ik′R

[
1

k′ − k
+

1

k′ + k

]
dk′
}

(J.8)

この波括弧の中の第一項は以下の二つの経路で複素積分をすることが出来る。このとき経路を選択する

ことは境界条件を決定することと同義である。
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経路１で積分すると ∫ +∞

−∞
eik

′R

[
1

k′ − k
+

1

k′ + k

]
dk′ = 2πie−ikR (J.9)

経路２で積分すると ∫ +∞

−∞
eik

′R

[
1

k′ − k
+

1

k′ + k

]
dk′ = 2πieikR (J.10)

波括弧内の第二項はそれぞれの経路から下側に弧を描くように経路を変更することで同様に計算出来て

それぞれ ∫ +∞

−∞
eik

′R

[
1

k′ − k
+

1

k′ + k

]
dk′ = −2πie−ikR (J.11)

∫ +∞

−∞
eik

′R

[
1

k′ − k
+

1

k′ + k

]
dk′ = −2πieikR (J.12)

となる。従って経路 1では

G
(−)
0 (R) = − 1

4π

e−ikR

R
(J.13)

の内向波、経路 2では

G
(+)
0 (R) = − 1

4π

eikR

R
(J.14)

の外向波となる。元の r, r′ で表すことにより求めたい式が導出できた。

G
(+)
0 (r, r′) = − 1

4π

exp [+ik|r − r′|]
|r − r′|

(J.15)

G
(−)
0 (r, r′) = − 1

4π

exp [−ik|r − r′|]
|r − r′|

(J.16)



65

Appendix K

付録 Z

ここでは章でのクーロン波動関数の漸近形 ()式の導出を行う。

まず一般的な第一種合流型超幾何関数 1F1(a; c; z)は

1F1(a; c; z) = 1 +
a

c

z

1!
+
a(a+ 1)

c(c+ 1)

z2

2!
+ · · ·

= σ∞
n=0

Γ(a+ n)γ(c)

Γ(a)Γ(c+ n)

zn

n!
(K.1)

ここで Γ(x)はガンマ関数である。さて、c = −p以外の状況を考えると (pは 0以上の整数)、全式の展

開は全ての zに対して定義が出来る。そして a = −pでない場合は |z| < ∞で定義できる。第一種合流
型超幾何関数について積分表示を考える。

1F1(a; c; z) = (1− e−2πia)−1 Γ(c)

Γ(a)Γ(c− a)

∮
C

eztta−1(1− t)c−a−1dt (K.2)

この積分は以下の経路 C をとり t = 0から t = 1の間にカットを持つ

この積分を次の積分経路に置き換える。

そして経路 C1 で積分した結果をW1(a; c; z)そして C2 で積分した結果をW2(a; c; z)とすると合流型

超幾何関数 1F1 は

1F1(a; c; z) =W1(a; c; z)W2(a; c; z) (K.3)

で表される。

そして、W1(a; c; z),W2(a; c; z)の z の無限遠での漸近形は

W1(a; c; z) →
Γ(c)

Γ(c− a)
(−z)−av(a; a− c+ 1;−z)

−π < arg(−z) < +π (K.4)

W2(a; c; z) →
Γ(c)

Γ(a)
za−cv(1− a; c− a; z)

−π < argz < +π (K.5)
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ここで

v(α;β; z)　 = 1 +
αβ

1!z
+
α(α+ 1)β(β + 1)

2!z2
+ · · ·

= σinfty
n=0

Γ(n+ α)

Γ(n+ β)
Γ(α)Γ(β)

(z)−n

n!
(K.6)

さて、それでは ψc について考える。ψc は

ψc = C[ψ1 + ψ2] (K.7)

ψ1　 = eikzW1(−iγ; 1; ik(r − z)) (K.8)

ψ2　 = eikzW2(−iγ; 1; ik(r − z)) (K.9)

となる。

(−ik(r − z))iγ = exp (iγ ln−ik(r − z))

= exp (iγ ln k(r − z)) exp iγ ln−i = exp (iγ ln k(r − z)) exp
1

2
γπ (K.10)

となるので無限遠 |r − z| → ∞で

ψ1　→
exp( 12πγ)

Γ(1 + iγ)
exp {i[kz + γ ln k(r − z)]}

[
1 +

γ2

ik(r − z)
· · ·
]

(K.11)

ψ2 →
exp( 12πγ)

Γ(−iγ)
exp {i[kz − γ ln k(r − z)]}

ik(r − z)

[
1 +

(1 + iγ)2

ik(r − z)
· · ·
]

→ −
γ exp( 12πγ)

Γ(1− iγ)

exp {i[kz − γ ln k(r − z)]}
k(r − z)

[
1 +

(1 + iγ)2

ik(r − z)
· · ·
]

(K.12)

したがって

ψc → C
exp ( 12πγ)

Γ(1 + iγ)

[
exp {i[kz + γ ln kr(1− cos θ)]}

(
1 +

γ2

ikr(1− cos θ)
+ . . .

)]
+ C

exp ( 12πγ)

Γ(1 + iγ)

[
fc(θ)

exp {i(kr − γ ln 2kr)}
r

(
1 +

(1 + iγ)2

ikr(1− cos θ)
+ . . .

)]
(K.13)

fc(θ) = −γ exp (2iσ0)
−iγ ln(sin2 1

2θ)

2k sin2 1
2θ

(K.14)

σ0 = argΓ(1 + iγ) (K.15)

となる。
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