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概 要

暗黒物質は現在までの観測によりほぼ確実に存在しているとされている。しかしその正体については全く分か
らず、いまだに観測されていない。暗黒物質を説明する理論は色々あるが、現在観測されている残存量を説明す
るためには coannihilation機構が必要になることが多々ある。この様な場合、暗黒物質以外に質量が縮退した粒
子を必要とする。このような粒子が存在する場合、Sommerfeld Enhancementの効果によって暗黒物質の対消滅
の cross sectionが桁で大きくなる可能性がある。従って、間接検出を考えた時に将来的に測定可能な領域がある
可能性がある。そこで、間接検出でよく用いられる光子を終状態に含む cross sectionを計算し、銀河中心での暗
黒物質の対消滅による光子の fluxを計算した。今回考えたモデルはMSSM(minimal supersymmetric standard
model)で暗黒物質を neutralino、質量が縮退している粒子として sleptonを考える。MSSMはパラメータの数
が標準模型より多くなるため様々な仮定をしてパラメータの数を減らした模型 (CMSSM など) がよく用いられ
るが、より一般の場合について議論するため、何の仮定もしない一般の MSSM について考える。Sommerfeld
Enhancementの効果を計算するためには、MSSMで得られる actionを、非相対論的な 2体状態の actionに書
き直す必要がある。その計算手法や、cross sectionを定式化する方法について詳しく議論した。
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1 Introduction

2012年にヒッグス粒子が発見されたことで標準模型 (Standard model)が完成したが、素粒子物理学はこれで完

成したというわけではない。標準模型では観測された実験結果をすべて説明できるわけではないからである。そ

の例として、標準模型では暗黒物質 (Dark matter)が何なのか説明できないという点がある。この問題を解決す

るために標準模型を何らかの形で拡張する必要がある。この論文では、標準模型を超対称性 (Super symmetry)を

導入することで拡張し、超対称粒子に暗黒物質の候補となる粒子を求めていくアプローチをとる。この章では暗

黒物質の性質や超対称性についての簡単な説明を行う。

まず、暗黒物質の歴史について振り返る。暗黒物質が最初に提唱されたのは 1933年に天文学者の Fritz Zwicky

によってである。Zwickyは当時研究対象としていたかみの毛座銀河団に対してビリアル定理を用いて、銀河団中

の全質量を見積もった結果、目に見える物体だけでは全質量を説明できないという結論に至り、目に見えない物

質、すなわち暗黒物質があるはずであると発表した。

暗黒物質の存在証拠として、1970年代に Vera Rubinの銀河の回転速度の観測により示された。ニュートン力

学によれば銀河中心から十分離れた回転速度 vは銀河中心からの距離 rを用いて、v ∝ r−1/2 となるはずである。

しかし、Rubinらの観測結果は図 1のように遠方で回転速度が一定となり、ニュートン力学と矛盾する。この矛

盾を解決するには暗黒物質があるはずである。現在ではWMAP(Wilkinson Microwave Anisotropy Probe)によ

図 1: Rubinらにより測定された銀河の回転曲線 ([1]より引用)

り宇宙の構成要素の比も測定されていて、暗黒物質は我々の宇宙の約２４％を占めているとされている (図 2)。

次に暗黒物質の 3つの満足すべき性質について述べる。まず現在まで観測されていない事実から暗黒物質は電

気的に中性である必要がある。次に上述した矛盾を解消するために有限の質量を持つこと。そして、現在まで崩壊

せずに存在しているために安定であること。暗黒物質を含む理論を考える上でこの 3つは必ず満たすようにしな

ければならない。これらの性質を満足するような暗黒物質の候補を考える上でまず、暗黒物質を粒子的なものと

見るかどうかでまず場合分けができる。非粒子的なものの例はブラックホールなどである。粒子的なものとした

時にはさらに暗黒物質が熱的かそうでないかで場合分けできる。非熱的な例としてアクシオンが挙げられる。熱

的な暗黒物質はさらに熱いか冷たい暗黒物質化に分けることができる。ここでいう熱い、冷たいとは暗黒物質が

脱結合するときに相対論的な状態ならば熱い、非相対論的ならば冷たいということである。簡単に図にすると図 3

のように暗黒物質の候補は場合分けできる。熱い暗黒物質の例として質量を持つニュートリノが挙げられる。し

かし現在ではニュートリノが暗黒物質の主成分ではないだろうということが分かっている。冷たい暗黒物質の例

としてはWIMP(Weakly Interacting Massive particle)が挙げられる。WIMPはO(GeV ) ∼ O(TeV )程度の質量

をもち、名前の通り他の粒子と弱く相互作用する。WIMPの有力候補として考えられているのが本論文で扱って
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図 2: 現在の宇宙の構成要素 ([2]より引用)

図 3: 暗黒物質の候補の場合分けの模式図 ([3]より引用)

いる neutralinoである。neutralinoとは超対称標準模型で予言される粒子のことで、標準模型におけるゲージボ

ソンのスピンが 1
2 となった粒子などの質量固有状態のことである。他にも余剰次元理論におけるカルツァクライ

ン励起状態の粒子がWIMPの候補として考えられている。

次に先ほど出てきた超対称性についての説明を行う。超対称性とはボソンとフェルミオンの間の対称性のこと

で、標準模型を超対称性を用いて拡張する場合は一番簡単な場合でも標準模型の倍の数の粒子が現れ、パラメー

タの数も 120を超える。この一番簡単な場合というのをMSSM(Minimal Super symmetric Standard Model)と

いい、図 4の物質場と図 5のゲージ場たちからなる。

neutralinoとは図 4のH0
u,H

0
d と図 5の W̃ 0, B̃0の線形結合で表される。neutralinoは質量をもち、電荷をもた

ない粒子であるが、超対称粒子なのでより質量の軽い標準模型の粒子へと崩壊する可能性がある。neutralinoを安

定なものにするためには、超対称性の理論を考える上で R-parityと呼ばれる、離散対称性を仮定しなければなら

ない。R-parityの定義はそれぞれの粒子に対するバリオン数 B、レプトン数 L、スピン sで

PR = (−1)3(B−L)+2s

と定義される。これは標準模型の粒子に対しては +1を、超対称粒子には −1を与える。この R-parityを導入す

ることで標準模型の粒子をX、超対称粒子を χと書くと、

χ→XX

χX →XX
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図 4: MSSMでの chiral supermultiplets([4]より引用)

図 5: MSSMでの gauge supermultiplets([4]より引用)

のような反応を禁止することができる。こうすることで超対称粒子で一番軽い粒子 (LSP)は安定な粒子となり、

暗黒物質の候補となるための 3つの条件を満足することができる。

現在この neutralino dark matterを見つけるため実験がされているが発見されず、質量の下限に制限がついてい

る。この制限を逃れるために暗黒物質の質量を大きくすればいいのだが、WIMPの残存量はWIMPの質量が増

えると多くなってしまう。そのため質量を大きくしすぎたら今度は残存量を満たさなくなってしまう。これらの実

験結果をうまく満たすようにするためには coannihilation[5]などの方法がある。coannihilationは暗黒物質の他に

質量が縮退している粒子があるモデルを考えるときに生じる効果である。この効果により、暗黒物質の質量を変

化させず、残存量を桁で小さくすることができる。そのため実験結果と矛盾しない parameter spaceが生じる可能

性がある。

Coannihilationを起こすようなモデルを考える場合、暗黒物質の間接検出において Sommerfeld Enhancement[6]

の効果が重要になる。Sommerfeld Enhancementとは、暗黒物質が標準模型の粒子へ対消滅する際に束縛状態を形

成することで、cross sectinが大きくなる効果のことである。diagram的に解釈すると、図 6のような diagramでは

なく、図 7のような ladder diagramを考えることになる。この機構によって、対消滅の cross sectionに resonance

が生じる。図 7の diagramの cross sectionを計算するためには、非相対論的な 1ループの effective action[7]の

シュレディンガー方程式を解いて波動関数を求める必要がある。

この論文では、neutralinoと質量が縮退している粒子として sleptonの一番質量が軽いものを考える。このよう

なモデルでは neutralinoだけでなく、sleptonの反応も図 7の中に寄与してくることになる。このような暗黒物質

のモデルのことを EWIMP(ElectroWeak Interacting Massive Particle)という。
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χ

χ

SM

SM

図 6: χが ϕを交換せずに SMの粒子へ崩壊する diagram

χ

χ

SM

SM

ϕ

図 7: χが n回 ϕを交換して SMの粒子へ崩壊する diagram

本論文では 2章でラグランジアンを導出し、3章で非相対論的な Two-body state effective actionを計算する。

そして 4章で cross sectionの式を導出し、5章で銀河中心からの光子の fluxについて議論し、6章でそれらの数

値的な計算結果についてまとめる。
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2 Lagrangian

この章ではイントロで述べたモデルのラグランジアンを導出する。まずは sleptonの質量行列を考える。関連す

る super potential W は

W = −ˆ̄eiyijL̂jαĤdβϵ
αβ + µĤuαĤdβϵ

αβ (1)

これより F-termの寄与を計算すると

W kW ∗
k ∼ ykj ẽLjH

0
dy

†
i
kẽ∗L

iH0
d
∗ + ẽ∗R

iyi
kH0

d ẽRjy
†
k
jH0

d
∗ − µ∗ẽ∗R

iyi
j ẽLjH

0
u − µH0

uẽRiy
†
j
iẽ∗L

j

= (ẽ∗L
iy†i

kyk
j ẽLj + ẽ∗R

iyi
ky†k

j ẽRj)|H0
d |2−(µ∗ẽ∗R

iyi
j ẽLjH

0
u + h.c) (2)

次に D-termの寄与を計算すると

1

2

∑
a

g2a(ϕ
∗T aϕ)2 ∼ 1

4
g2ẽ∗L

iẽLi

(
|H0

u|2−|H0
d |2
)
+

1

4
g′2(−ẽ∗LiẽLi + 2ẽ∗R

iẽRi)
(
|H0

u|2−|H0
d |2
)

(3)

さらに A-termの寄与は

Lsoft ∼ −ẽ∗Riai
j ẽLjH

0
d − ẽ∗Lia†i

j ẽRjH
0
d
∗　 (4)

式 (2)～(4)より sleptonの質量行列は ψ̃l = (ẽL µ̃L τ̃L ẽR µ̃R τ̃R)
T baseで

Lsleptonmass = −ψ̃†
lM

2ψ̃l (5)

と書ける。ここで、

M2 =

(
M2

LL M2
LR

M2
RL M2

RR

)
M2

LLi
j = m2

Li
j + y†i

kyk
jv2d +m2

z(s
2
w − 1/2)c2βδi

j

M2
LRi

j = −µvuy†ij + vda
†
i
j

M2
RLi

j = −µ∗vuyi
j + vdai

j

M2
RRi

j = m2
Ri

j + yi
ky†k

jv2d +m2
zs

2
wc2βδi

j

m2
L, m

2
R は soft breaking mass parameter、vu(vd)は Hu(Hd)の真空期待値、それらの比として tanβ = vu/vd、

sw(cw) = sinθw(cosθw)はWeinberg angle、mz(mw)は Z(W)ボソンの質量である。M2を対角化するためにはユ

ニタリ行列Nl̃A
B (A,B = 1 ∼ 6)を用いて

τ̃A = Nl̃A
Bψ̃lB (6)

→ ẽLi = N†
l̃ i

B τ̃B , ẽRi = N†
l̃ i+3

B τ̃B (N†
l̃ A

B ≡ (Nl̃A
B)†)

とすればいい。τ̃A の添え字については固有値である質量が小さい順に 1 ∼ 6とラベルされているものとする。次

に neutralinoの質量行列を求めると ψ̃0 = (B̃, W̃ 0, H̃0
d , H̃

0
u)

Tbaseで

Lneutralino 　mass = −
1

2
(ψ̃0)TMN ψ̃

0 + c.c. (7)

と書ける。ここで、

MN =


M1 0 −cβswmz sβswmz

0 M2 cβcwmz −sβcwmz

−cβswmz cβcwmz 0 −µ
sβswmz −sβcwmz −µ 0


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であり、spleptonの時と同様にユニタリ行列NG̃a
b(a, b = 1 ∼ 4)を用いて

χ̃a = NG̃a
bψ̃0

b (8)

とすれば対角化できる。ここでも χ̃aの添え字については固有値が小さい順に 1 ∼ 4とラベルされているものとす

る。最後に charginoの質量行列を求めると ψ̃± = (W̃+, H̃+
u , W̃

−, H̃−
d )baseで

Lcharginomass = −
1

2
(ψ̃±)TMC ψ̃

± + h.c. (9)

となる。ここで、

MC =

(
0 XT

X 0

)

X =

(
M2

√
2sβmw√

2cβmw µ

)
MC を対角化するためには 2つのユニタリ行列 U, V を用いて(

C̃+
1

C̃+
2

)
= V

(
W̃+

H̃+
u

)
,

(
C̃−

1

C̃−
2

)
= U

(
W̃−

H̃−
d

)
とすれば対角化することができる。ここでも今までと同様に固有値が小さい順に 1 ∼ 2とラベルしている。

次に相互作用項として、まずはゲージ相互作用を考える。

DµL̃∗iDµL̃i =

(
∂µL̃∗i +

1

2
ig′B0µL̃∗i − 1

2
ig

(
W 0µ

√
2W+µ

√
2W−µ −W 0µ

)
L̃∗i

)

×

(
∂µL̃i −

1

2
ig′B0

µL̃i +
1

2
ig

(
W 0

µ

√
2W+

µ√
2W−

µ −W 0
µ

)
L̃i

)

→− 1

2
ig′ (−swZµ + cwAµ) ∂

µL̃∗iL̃i +
1

2
ig∂µL̃∗i

(
cwZµ + swAµ

√
2W+

µ√
2W−

µ −cwZµ − swAµ

)
L̃i

+
1

2
ig′ (−swZµ + cwA

µ) L̃∗i∂µL̃i −
1

2
igL̃∗i

(
cwZ

µ + swA
µ

√
2W+µ

√
2W−µ −cwZµ − swAµ

)
∂µL̃i

→ieAµẽ
∗
L
i←→∂

µ
ẽLi − igzZµ

(
s2w − 1/2

)
ẽ∗L

i←→∂
µ
ẽLi (10)

− i
√
2

2
g
(
W+

µ ν̃
∗i←→∂

µ
ẽLi +W−

µ ẽ
∗
L
i←→∂

µ
ν̃i

)
+ e2A2|ẽLi|2+g2z

(
s2w − 1/2

)2
Z2|ẽLi|2−2egz

(
s2w − 1/2

)
AµZ

µ|ẽLi|2+
g2

2
W+

µ W
−µ|ẽLi|2　

Dµ ˜̄e∗iDµ ˜̄e
i →ig′Bµẽ

∗
R
i←→∂

µ
ẽRi + g′

2
B2|ẽRi|2

=ieAµẽ
∗
R
i←→∂

µ
ẽRi − ig′zs2wZµẽ

∗
R
i←→∂

µ
ẽRi (11)

+ e2A2|ẽRi|2+g2zs4wZ2|ẽRi|2−2egzs2wAµZ
µ|ẽRi|2

ここでDµ は共変微分を表し、

ϕ
←→
∂

µ
ψ = ϕ∂µψ − ∂µϕψ

と定義される演算子で、 (
Z0

A

)
=

(
cw −sw
sw cw

)(
W 0

B0

)
　

g′ = swgz, g = cwgz
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などの関係を用いた。従ってゲージ相互作用は

Lgauge =ieAµẽ
∗
L
i←→∂

µ
ẽLi − igzZµ

(
s2w − 1/2

)
ẽ∗L

i←→∂
µ
ẽLi + ieAµẽ

∗
R
i←→∂

µ
ẽRi − igzs2wZµẽ

∗
R
i←→∂

µ
ẽRi

− i
√
2

2
g
(
W+

µ ν̃
∗i←→∂

µ
ẽLi +W−

µ ẽ
∗
L
i←→∂

µ
ν̃i

)
+ e2A2|ẽLi|2+g2z

(
s2w − 1/2

)2
Z2|ẽLi|2−2egz

(
s2w − 1/2

)
AµZ

µ|ẽLi|2+
g2

2
W+

µ W
−µ|ẽLi|2

+ e2A2|ẽRi|2+g2zs4wZ2|ẽRi|2−2egzs2wAµZ
µ|ẽRi|2

→ieAµτ̃
∗←→∂

µ
τ̃ − igzZµ

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)
τ̃∗
←→
∂

µ
τ̃ (12)

− i
√
2

2
g
(
W+

µ ν̃
∗i←→∂

µ
N†

l̃ i
1τ̃ +W−

µ τ̃
∗Nl̃1

i←→∂
µ
ν̃i

)
+ e2A2|τ̃ |2+g2z

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)2

Z2|τ̃ |2−2egz
(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)
AµZ

µ|τ̃ |2

+
g2

2
Nl̃1

iN†
l̃ i

1W+
µ W

−µ|τ̃ |2

と書ける。最後の矢印においては式（6）における A=1のみ残し、添え字は省略した。以下の議論でも τ̃ は A=1

の添え字を省略しているものとする。次に higgs-stau-stauの 3点相互作用を考える。式（2）～（4）より

Lh0−τ̃−τ̃ =
1√
2
τ̃∗τ̃h0

[
−1

2
(cαvu + sαvd)

(
g2Nl̃1

iN†
l̃ i

1 + g′2
(
−Nl̃1

iN†
l̃ i

1 + 2Nl̃1
i+3N†

l̃ i+3
1
))

+ 2sαvd

(
Nl̃1

iy†i
kyk

jN†
l̃ j

1 +Nl̃1
i+3yi

ky†k
jN†

l̃ j+3
1
)

+ cα

(
µ∗Nl̃1

i+3yi
jN†

l̃ j
1 + h.c.

)
+ sα

(
Nl̃1

i+3ai
jN†

l̃ j
1 + h.c.

)]
(13)

ここで (
H0

u

H0
d

)
=

(
vu

vd

)
+

1√
2

(
cα sα

−sα cα

)(
h0

H0

)

の関係を用いた。同様に higgs-higgs-stau-stauの 4点相互作用は

Lh0−h0−τ̃−τ̃ =τ̃∗τ̃h0
2
[
−1

8
g2(c2α − s2α)Nl̃1

iN†
l̃ i

1 − 1

8
g′2(c2α − s2α)

(
−Nl̃1

iN†
l̃ i

1 + 2Nl̃1
i+3N†

l̃ i+3
1
)

−1

2
s2α

(
Nl̃1

iy†i
kyk

jN†
l̃ j

1 +Nl̃1
i+3yi

ky†k
jN†

l̃ j+3
1
)]

(14)

と書ける。次に gauginoとの相互作用を考える。書き下すと、

Lgaugino =

√
2

2
g′ẽ∗L

i ¯̃BDPLeDi −
√
2g′ẽ∗R

i ¯̃BDPReDi +

√
2

2
gẽ∗L

i ¯̃W 0
DPLeDi (15)

+
1

2
ẽ∗L

iy†i
j ¯̃H0

dDPReDj +
1

2
ẽ∗R

iyi
j ¯̃H0

dDPLeDj + h.c.

ここで、PL, PR はそれぞれ left handed, right handedへの projection operatorで、

PL = (1− γ5)/2, PR = (1 + γ5)/2

と定義される。さらに 4成分スピノル eDi, ψ̃
0
Da を

eDi =

(
eLαi

eR
α̇
i

)
ψ̃0
Da =

(
ψ̃0
αa

ψ̃0†α̇
a

)

10



と定義した。式（6）、（8）を用いて式 (15)を書きなおすと

Lgaugino =τ̃∗ ¯̃χ

[
PL

(√
2

2
g′Nl̃1

iNG̃1
1 +

√
2

2
gNl̃1

iNG̃1
2 +

1

2
Nl̃1

j+3yj
iNG̃1

4

)

+PR

(
−
√
2g′Nl̃1

i+3NG̃1
1 +

1

2
Nl̃1

iy†i
jNG̃1

4

)]
eDi + h.c. (16)

ここで τ̃ と同様に χ̃についても a = 1のみ残し、以下の議論で添え字は省略する。最後に終状態で neutrinoを出

すような相互作用は

Lchargino =− gẽ∗LiW̃−νi − gν†iW̃−†ẽLi −
1

2
ẽ∗R

iyi
jνjH̃

−
d −

1

2
ν†

i
y†i

j ẽRjH̃
−
d

†

=τ̃∗ ¯̃CαPLνDi

[
−gNl̃1

iU†
1
α − 1

2
Nl̃1

j+3yj
iU†

2
α
]
+ h.c. (17)

となる。ここで 4成分スピノル C̃α を

C̃α =

(
C̃+

α

C̃−†α

)
と定義した。

従って、今回考える模型のラグランジアンは

L =LKT + Lgauge + Lh0−τ̃−τ̃ + Lh0−h0−τ̃−τ̃ + Lgaugino + Lchargino

=
1

2
¯̃χ (i/∂ −m) χ̃+ ¯̃Cα (i/∂ −mCα

) C̃α + ν̄iDi/∂νDi + ēiD

(
i/∂δji −mei

j
)
eDj − τ̃∗(∂2 +m2

τ̃ )τ̃ − ν̃∗i(∂2δ
j
i +m2

ν̃ i
j)ν̃j

+
1

2
Zµ(∂

2 +m2
Z)g

µνZν +
1

2
Aµ∂

2gµνAν +W+
µ (∂2 +m2

W )gµνW−
ν −

1

2
h0(∂2 +m2

h0)h0

+ ieAµτ̃
∗←→∂

µ
τ̃ − igzZµ

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)
τ̃∗
←→
∂

µ
τ̃

− i
√
2

2
g
(
W+

µ ν̃
∗i←→∂

µ
N†

l̃ i
1τ̃ +W−

µ τ̃
∗Nl̃1

i←→∂
µ
ν̃i

)
+ e2A2|τ̃ |2+g2z

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)2

Z2|τ̃ |2−2egz
(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)
AµZ

µ|τ̃ |2

+
g2

2
Nl̃1

iN†
l̃ i

1W+
µ W

−µ|τ̃ |2

+
1√
2
τ̃∗τ̃h0

[
−1

2
(cαvu + sαvd)

(
g2Nl̃1

iN†
l̃ i

1 + g′2
(
−Nl̃1

iN†
l̃ i

1 + 2Nl̃1
i+3N†

l̃ i+3
1
))

+ 2sαvd

(
Nl̃1

iy†i
kyk

jN†
l̃ j

1 +Nl̃1
i+3yi

ky†k
jN†

l̃ j+3
1
)

+ cα

(
µ∗Nl̃1

i+3yi
jN†

l̃ j
1 + h.c.

)
+ sα

(
Nl̃1

i+3ai
jN†

l̃ j
1 + h.c.

)]
+ τ̃∗τ̃h0

2
[
−1

8
g2(c2α − s2α)Nl̃1

iN†
l̃ i

1 − 1

8
g′2(c2α − s2α)

(
−Nl̃1

iN†
l̃ i

1 + 2Nl̃1
i+3N†

l̃ i+3
1
)

−1

2
s2α

(
Nl̃1

iy†i
kyk

jN†
l̃ j

1 +Nl̃1
i+3yi

ky†k
jN†

l̃ j+3
1
)]

+

(
τ̃∗ ¯̃χ

[
PL

(√
2

2
g′Nl̃1

iNG̃1
1 +

√
2

2
gNl̃1

iNG̃1
2 +

1

2
Nl̃1

j+3yj
iNG̃1

4

)

+PR

(
−
√
2g′Nl̃1

i+3NG̃1
1 +

1

2
Nl̃1

iy†i
jNG̃1

4

)]
eDi + h.c.

)
+

(
τ̃∗ ¯̃CαPLνDi

[
−gNl̃1

iU†
1
α − 1

2
Nl̃1

j+3yj
iU†

2
α
]
+ h.c.

)
(18)
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3 Two-body state effective action

この章では式 (18)のラグランジアンから得られる、非相対論的な 2体状態の 1ループ effective actionを導出し

ていく。導出の方法としてまず、(i)χ̃, τ̃ 以外のすべての場について integrate outする。次に非相対論的な action

を得るために、(ii)χ̃, τ̃ の large momentum modeを integrate outする。そして次に、(iii)EWIMPの速度で (ii)

で得られた actionを展開する。最後に (iv)2体状態を表す補助場を導入し、(iii)で得られた actionに対して補助

場以外のすべての場について integrate outすればよい。

3.1 Integrating out all fields except χ̃, τ̃

まず最初にここでは χ̃, τ̃ 以外の場についてすべて integrate outしていくことで 1ループの effective actinoを得

る。まずは Aµ について考える。式 (18)の中で関連する項を抜き出すと、

SA =− i ln
∫
DA exp i

[∫
d4x

(
1

2
Aµ∂

2gµνAν + ieAµτ̃
∗←→∂

µ
τ̃　

+e2A2|τ̃ |2−2egz
(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)
AµZ

µ|τ̃ |2
)]

(19)

となる。Aµ について変数変換

Aµ → Aµ + i

∫
d4yDA

µν(x− y)J ν(y)

を行えば式 (19)は

SA =− i ln
∫
DA exp

[
− i
2

∫
d4xAµ(−Lµν

A )Aν

]
+
i

2

∫
d4xd4yJ µ(x)DA

µν(x− y)J ν(y)　

=− i lnDet−
1
2 (−Lµν

A ) +
i

2

∫
d4xd4yJ µ(x)DA

µν(x− y)J ν(y) (20)

と変形できる。ここで、

Lµν
A D

A
νρ(x− y) = (∂2 + 2e2|τ̃ |2)gµνDA

νρ(x− y) = iδ(x− y)δµρ

J µ(x) = ieτ̃∗
←→
∂

µ
τ̃ − 2egz

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)
Zµ|τ̃ |2　

Jµ
A(x) = ieτ̃∗

←→
∂

µ
τ̃

と定義した。式（20）の右辺第 1項目について詳しく評価していくと、

−i lnDet−
1
2 (−Lµν

A ) =
i

2
Tr ln(−Lµν

A )

=
i

2
Tr
[
ln
(
−∂2 − 2e2|τ̃ |2)gµν

)]
≡ i
2
Tr [ln (A0 + δA)]

=
i

2
Tr
[
lnA0(1 +A−1

0 δA)
]

=
i

2
Tr

[
lnA0 +A−1

0 δA− 1

2
A−1

0 δAA−1
0 δA

]
∼ie4tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)DA
µν(x1 − x2)DAνρ(x2 − x1) (21)
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と評価できる。最後の ∼においては 1項目と 2項目は考えたい diagramではないため無視し、3項目のみ取り出

した。ここでDA
µν(x− y)は光子のプロパゲーターで、

A−1
0 = iDA

µν(x− y) = i

∫
d4q

(2π)
4

−igµν
q2 + iϵ

e−iq(x−y) (22)

である。式（20）の右辺第 2項については展開の最低次で DA
νρ(x− y) ∼ DA

µν(x− y)となるので最終的に

SA =ie4tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)DA
µν(x1 − x2)DAνρ(x2 − x1)

+
i

2

∫
d4xd4yJ µ(x)DA

µν(x− y)J ν(y) (23)

となる。次に Zµ についても式（18）、（23）から Zµ に関連する項を抜き出し、Aµ の時と同様な計算をすると、

SZ =− i lnDet−
1
2 (−Lµν

Z )

+
i

2

∫
d4xd4yJµ

Z(x)D
Z
µν(x− y)Jν

Z(y)　

∼2ie2g2z
(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)2

tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)DZ
µν(x1 − x2)DAνρ(x2 − x1)

+ ig4z

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)4

tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)DZ
µν(x1 − x2)DZνρ(x2 − x1)

+
i

2

∫
d4xd4yJµ

Z(x)D
Z
µν(x− y)Jν

Z(y) (24)

となる。ここで、

Lµν
Z =

(
∂2 +m2

Z + 2g2z

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)2

|τ̃ |2

+4ie2g2z

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)2 ∫
d4y|τ̃ |2(x)DA

µν(x− y)|τ̃ |2(y)

)
gµν

DZ
µν(x− y) = −i

∫
d4q

(2π)
4

gµν
q2 −m2

Z + iϵ
e−iq(x−y)

Jµ
Z(x) = −igz

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)
τ̃∗
←→
∂

µ
τ̃

である。次にW+,W− についても同様の計算によって、

SW =
i

4
g4
(
Nl̃1

iN†
l̃ i

1
)2

tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)DW
µν(x1 − x2)DWνρ(x2 − x1)

+ i

∫
d4xd4yJµ

W (x)DW
µν(x− y)Jν

W
†(y) (25)

と計算できる。ここで、

DW
µν(x− y) = −i

∫
d4q

(2π)
4

gµν
q2 −m2

W + iϵ
e−iq(x−y)

Jµ
W (x) = −i

√
2

2
gNl̃1

iτ̃∗
←→
∂

µ
ν̃i

Jµ
W

†
(x) = −i

√
2

2
gN†

l̃ i
1ν̃∗i
←→
∂

µ
τ̃

13



である。続いて ν̃∗i, ν̃i についても同様の計算で、

Sν̃ =2ig4N†
l̃ i

1Nl̃1
jN†

l̃ k
1Nl̃1

ltr

∫
d4x1d

4x2d
4x3d

4x4

× ∂σ τ̃∗(x1)∂µτ̃(x2)∂ν τ̃∗(x3)∂ρτ̃(x4)

×Dν̃
j
i(x1 − x2)DW

µν(x3 − x2)Dν̃
l
k(x3 − x4)DW

ρσ(x1 − x4) (26)

となる。ここで、

Dν̃
i
j(x− y) = −i

∫
d4q

(2π)
4

δji
q2 −m2

ν̃ + iϵ
e−iq(x−y)

である。次に eD, ēD についても同様で、

Se = i

∫
d4xd4yτ̃∗(x)τ̃(y) ¯̃χ(x)

[
Ci

1PL + Ci
2PR

]
Sτ (x− y)i

j
[
C†

1jPR + C†
2jPL

]
χ̃(y) (27)

となる。ここで、

Sτ (x− y)i
j = i

∫
d4q

(2π)
4

/qδji +mei
j

q2 −m2
e + iϵ

e−iq(x−y)

Ci
1 =

(√
2

2
g′Nl̃1

iNG̃1
1 +

√
2

2
gNl̃1

iNG̃1
2 +

1

2
Nl̃1

j+3yj
iNG̃1

4

)

Ci
2 =

(
−
√
2g′Nl̃1

i+3NG̃1
1 +

1

2
Nl̃1

iy†i
jNG̃1

4

)
である。νD, ν̄D についても

Sν̃ = i

∫
d4xd4yτ̃∗(x)τ̃(y) ¯̃Cα(x)C

iαPLS
ν(x− y)i

jC†
jβPRC̃

β(y) (28)

となり、

Sν(x− y)i
j = i

∫
d4q

(2π)
4

/qδji
q2 + iϵ

e−iq(x−y)

Ciα = −gNl̃1
iU†

1
α − 1

2
Nl̃1

j+3yj
iU†

2
α

で定義される。続いて ¯̃C, C̃ について計算すると

SC̃ =
i

2
tr

∫
d4x1d

4x2d
4x3d

4x4τ̃
∗(x1)τ̃(x2)τ̃

∗(x3)τ̃(x4)

× SC̃(x1 − x2)αβCiαPLS
ν(x2 − x3)i

jC†
jβPRS

C̃(x3 − x4)γδCkγPLS
ν(x4 − x1)k

lC†
lδPR (29)

である。ここで、

SC̃(x− y)α
β = i

∫
d4q

(2π)
4

/q +mCα

q2 −m2
Cα

+ iϵ
δβαe

−iq(x−y)

と定義される。最後に h0 について計算すると、

Sh0 =iC
(4)
h0

2
tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)Dh0

(x1 − x2)Dh0

(x2 − x1)

− i

2

∫
d4xd4yJh0

(x)Dh0

(x− y)Jh0

(y) (30)
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となる。ここで、

Dh0

(x− y) = −i
∫

d4q

(2π)
4

1

q2 −m2
h0 + iϵ

e−iq(x−y)

Jh0

(x) = |τ̃(x)|2Ch0

C
(4)
h0 =− 1

8
g2(c2α − s2α)Nl̃1

iN†
l̃ i

1 − 1

8
g′2(c2α − s2α)

(
−Nl̃1

iN†
l̃ i

1 + 2Nl̃1
i+3N†

l̃ i+3
1
)

− 1

2
s2α

(
Nl̃1

iy†i
kyk

jN†
l̃ j

1 +Nl̃1
i+3yi

ky†k
jN†

l̃ j+3
1
)

Ch0 =
1√
2

[
−1

2
(cαvu + sαvd)

(
g2Nl̃1

iN†
l̃ i

1 + g′2
(
−Nl̃1

iN†
l̃ i

1 + 2Nl̃1
i+3N†

l̃ i+3
1
))

+ 2sαvd

(
Nl̃1

iy†i
kyk

jN†
l̃ j

1 +Nl̃1
i+3yi

ky†k
jN†

l̃ j+3
1
)

+ cα

(
µ∗Nl̃1

i+3yi
jN†

l̃ j
1 + h.c.

)
+ sα

(
Nl̃1

i+3ai
jN†

l̃ j
1 + h.c.

)]
と定義される。以上の計算により effective actionは

Seff =

∫
d4x

[
1

2
¯̃χ (i/∂ −m) χ̃− τ̃∗(∂2 +m2

τ̃ )τ̃

]
+ S ′A + SZ + S ′W + Sν̃ + Se + SC̃ + Sh0 (31)

となる。ここで、

S ′A =ie4tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)DA
µν(x1 − x2)DAνρ(x2 − x1)

+
i

2

∫
d4xd4yJµ

A(x)D
A
µν(x− y)Jν

A(y) (32)

S ′W =
i

4
g4
(
Nl̃1

iN†
l̃ i

1
)2

tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)DW
µν(x1 − x2)DWνρ(x2 − x1) (33)

である。

3.2 Integrating out large momentum modes of χ̃, τ̃

次に χ̃, τ̃ の large momentum modeを式（31）で integrate outすることで非相対論的な actionに変形してく。

やり方として χ̃, τ̃ を

χ̃(x) =χ̃(x)R + χ̃(x)NR

χ̃(x)R =

∫
R

d4q

(2π)
4ϕ

0(q)e−iqx (34)

χ̃(x)NR =

∫
NR

d4q

(2π)
4ϕ

0(q)e−iqx

と相対論的な領域と非相対論的な領域に分割して考える。ここで、ϕ0 は χ̃のフーリエ係数である。積分範囲の

R,NRの意味はそれぞれ相対論的な運動量の範囲と非相対論的な運動量の範囲で積分するという意味である。τ̃

についても式（34）のように τ̃NR, τ̃R の 2つに分割する。まず最初に χ̃R について integrate outすることを考え
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る。3.1節で行ったことと同様に式（31）から χ̃R に関連する項を抜き出すと

Sχ̃ =
1

2

∫
d4x( ¯̃χ(x)R + ¯̃χ(x)NR) (i/∂ −m) (χ̃(x)R + χ̃(x)NR)

+ i

∫
d4xd4yτ̃∗(x)τ̃(y)

× ( ¯̃χ(x)R + ¯̃χ(x)NR)
[
Ci

1PL + Ci
2PR

]
Sτ (x− y)i

j
[
C†

1jPR + C†
2jPL

]
(χ̃(y)R + χ̃(y)NR)

→1

2

∫
d4x ¯̃χ(x)NR (i/∂ −m) χ̃(x)NR +

1

2

∫
d4x ¯̃χ(x)R (i/∂ −m) χ̃(x)R

+ i

∫
d4xd4yτ̃∗(x)τ̃(y) ¯̃χ(x)NR

[
Ci

1PL + Ci
2PR

]
Sτ (x− y)i

j
[
C†

1jPR + C†
2jPL

]
χ̃(y)NR

+ i

∫
d4xd4yτ̃∗(x)τ̃(y) ¯̃χ(x)R

[
Ci

1PL + Ci
2PR

]
Sτ (x− y)i

j
[
C†

1jPR + C†
2jPL

]
χ̃(y)R (35)

ここで、矢印のところで運動量保存的に排除される χ̃Rと χ̃NRの交差項は無視した。これより χ̃のマヨラナ性に

注意して integrate outすると

Sχ̃NR
=− i ln

∫
Dχ̃RD ¯̃χR exp[iSχ̃]

∼itr
∫
d4x1d

4x2d
4x3d

4x4τ̃(x1)τ̃
∗(x2)τ̃(x3)τ̃

∗(x4)

× Sχ̃(x1 − x2)
[
Ci

1PL + Ci
2PR

]
Sτ (x2 − x3)i

j
[
C†

1jPR + C†
2jPL

]
× Sχ̃(x3 − x4)

[
Ck

1PL + Ck
2PR

]
Sτ (x4 − x1)k

l
[
C†

1lPR + C†
2lPL

]
(36)

16



と計算できる。続いて τ̃ についても同様に計算すると最終的に得られる非相対論的 effective action SNR は

SNR =
1

2

∫
d4x ¯̃χ(x) (i/∂ −m) χ̃(x)−

∫
d4xτ̃∗(∂2 +m2

τ̃ )τ̃

+
i

2

∫
d4xd4yJµ

A(x)D
A
µν(x− y)Jν

A(y)

+
i

2

∫
d4xd4yJµ

Z(x)D
Z
µν(x− y)Jν

Z(y)

− i

2

∫
d4xd4yJh0

(x)Dh0

(x− y)Jh0

(y)

+ i

∫
d4xd4yτ̃∗(x)τ̃(y) ¯̃χ(x)

[
Ci

1PL + Ci
2PR

]
Sτ (x− y)i

j
[
C†

1jPR + C†
2jPL

]
χ̃(y)

+ ie4tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)DA
µν(x1 − x2)DAνρ(x2 − x1)

+ 2ie2g2z

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)2

tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)DZ
µν(x1 − x2)DAνρ(x2 − x1)

+ ig4z

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)4

tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)DZ
µν(x1 − x2)DZνρ(x2 − x1)

+
i

4
g4
(
Nl̃1

iN†
l̃ i

1
)2

tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)DW
µν(x1 − x2)DWνρ(x2 − x1)

+ iC
(4)
h0

2
tr

∫
d4x1d

4x2|τ̃ |2(x1)|τ̃ |2(x2)Dh0

(x1 − x2)Dh0

(x2 − x1)

+ 2ig4N†
l̃ i

1Nl̃1
jN†

l̃ k
1Nl̃1

ltr

∫
d4x1d

4x2d
4x3d

4x4∂
σ τ̃∗(x1)∂

µτ̃(x2)∂
ν τ̃∗(x3)∂

ρτ̃(x4)

×Dν̃
j
i(x1 − x2)DW

µν(x3 − x2)Dν̃
l
k(x3 − x4)DW

ρσ(x1 − x4)

+ itr

∫
d4x1d

4x2d
4x3d

4x4τ̃(x1)τ̃
∗(x2)τ̃(x3)τ̃

∗(x4)

× Sχ̃(x1 − x2)
[
Ci

1PL + Ci
2PR

]
Sτ (x2 − x3)i

j
[
C†

1jPR + C†
2jPL

]
× Sχ̃(x3 − x4)

[
Ck

1PL + Ck
2PR

]
Sτ (x4 − x1)k

l
[
C†

1lPR + C†
2lPL

]
− i

2

∑
ϕ,ϕ′

aϕaϕ′tr

∫
d4x1d

4x2d
4x3d

4x4D
τ̃ (x1 − x2)δAϕ(x2, x3)D

τ̃ (x3 − x4)δAϕ′(x4, x1)

+
i

2
tr

∫
d4x1d

4x2d
4x3d

4x4τ̃
∗(x1)τ̃(x2)τ̃

∗(x3)τ̃(x4)

× SC̃(x1 − x2)αβCiαPLS
ν(x2 − x3)i

jC†
jβPRS

C̃(x3 − x4)γδCkγPLS
ν(x4 − x1)k

lC†
lδPR (37)

ここで ϕについての和は ϕ = A,Z, h0 についてとり、aϕ, δAϕ はそれぞれ

aA =
ie2

2
aZ =

ig2z
2

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)2

ah0 =
iC2

h0

2
(38)

δAA(x, y) =
←→
∂

µ
τ̃(x)

(
DA

µν(x− y) +DA
µν(y − x)

)
τ̃∗(y)

←→
∂

ν

δAZ(x, y) =
←→
∂

µ
τ̃(x)

(
DZ

µν(x− y) +DZ
µν(y − x)

)
τ̃∗(y)

←→
∂

ν
(39)

δAh0(x, y) =τ̃(x)
(
Dh0

(x− y) +Dh0

(y − x)
)
τ̃∗(y)

のように定義してある。Dτ̃ は τ̃ のプロパゲーターで

Dτ̃ (x− y) =− i
∫

d4q

(2π)
4

1

q2 −m2
τ̃ + iϵ

e−iq(x−y)

と定義される。また式（37）においては χ̃, τ̃ の NRの記号は全て省略してある。以降の議論でも NRの記号は省

略して書く。
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3.3 Nonrelativistic expansion of action

この節では式（37）で得られた actionを EWIMPの速度で展開していく。この展開にあたっては 4成分スピノ

ルよりも 2成分スピノルで議論したほうが便利なので 2成分スピノル ζ, η, ξを以下のように

χ̃ =

 e−imtζ + ieimt
−→
∇ ·σ
2m ζc

eimtζc − ie−imt
−→
∇ ·σ
2m ζ

 τ̃ =
1√
2m

ηe−imt +
1√
2m

ξeimt (40)

f(x) =

∫
NR

d4q

(2π)
4 f̃(k)e

−ikx, (f = ζ, η, ξ), k0 = O(mv2),
−→
k = O(mv) (41)

と定義する。ここで、ζcは ζ の荷電共役であり、ζc = −iσ2ζ†
T
である。そして以下では非相対論的な効果を扱い

たいので γ 行列は dirac representationで計算していく。まずは運動項を計算する。ζc†ζc = −ζ†ζ などに注意し
て、高次の項を無視すると、

SK.T. =
1

2

∫
d4x ¯̃χ(x) (i/∂ −m) χ̃(x)−

∫
d4xτ̃∗(∂2 +m2

τ̃ )τ̃

=

∫
d4x

[
ζ†
(
i∂0 +

∇2

2m

)
ζ + η∗

(
i∂0 +

∇2

2m
− δm

)
η − ξ∗

(
i∂0 −

∇2

2m
+ δm

)
ξ

]
(42)

と計算される。ここで δmは

δm =
m2

τ̃ −m2

2m
(43)

で定義される。

次にポテンシャルの項（式（37）で trではない項）を計算していく。τ̃∗
←→
∂

µ
τ̃ ∼ −i (η∗ηδµ0 − ξ∗ξδ

µ
0 )に注意し

てまずは光子に関する部分を計算する。計算すると、

SANR =
i

2

∫
d4xd4yJµ

A(x)D
A
µν(x− y)Jν

A(y)

=
ie2

2

∫
d4xd4y (η∗η − ξ∗ξ) (x)(−i)

∫
d4q

(2π)
4

1

q2 + iϵ
e−iq(x−y) (η∗η − ξ∗ξ) (y) (44)

となる。ここで、η, ξ をフーリエ変換すると qが η, ξの運動量の差に比例することが分かるので

q2 ∼ −q2

と近似してもよいことになり、式（44）の d4q積分を実行すると

SANR =− 1

2
α

∫
d4xd4y

δ(x0 − y0)
|x− y|

(η∗(x)η(x)η∗(y)η(y) + ξ∗(x)ξ(x)ξ∗(y)ξ(y)− 2η∗(x)η(x)ξ∗(y)ξ(y)) (45)

と計算できる。同様の計算で Z,ヒッグス、neutralinoに関する項は計算することができて、結果は

SZNR =− g2z
2

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)2

×
∫
d4xd4y

e−mzr

4π

δ(x0 − y0)
|x− y|

(η∗(x)η(x)η∗(y)η(y) + ξ∗(x)ξ(x)ξ∗(y)ξ(y)− 2η∗(x)η(x)ξ∗(y)ξ(y))

(46)

Sh
0

NR =
1

2
C2

h0

∫
d4xd4y

e−mh0r

4π

δ(x0 − y0)
|x− y|

1

(2m)2

×
(
|η(x)|2+|ξ(x)|2+η∗(x)ξ(x)e2imx0

+ ξ∗(x)η(x)e−2imx0
)

×
(
|η(y)|2+|ξ(y)|2+η∗(y)ξ(y)e2imy0

+ ξ∗(y)η(y)e−2imy0
)
　 (47)

SneutralinoNR =

∫
d4xd4y

e−mei
rδ(x0 − y0)
16πmr

(
Ci

1mei
jC†

2j − Ci
2mei

jC†
1j

)
×
(
η∗(x)ζc†(x)ξ(y)ζ(y)− ξ∗(x)ζ†(x)η(y)ζc(y)

)
(48)
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τ̃

τ̃∗

τ̃

τ̃∗

χ̃

f

f

χ̃

図 8: 式（37）の下から 3項目の表す Feynman diagram(TicZ-FeynHand[19]を用いた)

と計算される。式（45）～（47）で η∗(x)η(x)ξ∗(y)ξ(y)の項のみ必要になるので最終的にポテンシャル項をまと

めると、

SPot. =

∫
d4xd4yδ(x0 − y0)

[
α

r
+ g2z

(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)2
e−mzr

4πr
+ C2

h0

e−mh0r

8πm2

]
η∗(x)η(x)ξ∗(y)ξ(y)

+

∫
d4xd4y

e−mei
rδ(x0 − y0)
16πmr

(
Ci

1mei
jC†

2j − Ci
2mei

jC†
1j

)
×
(
η∗(x)ζc†(x)ξ(y)ζ(y)− ξ∗(x)ζ†(x)η(y)ζc(y)

)
≡
∫
d4xd4yδ(x0 − y0)

[
S(1)pot.η

∗(x)η(x)ξ∗(y)ξ(y)

+S(2)pot.

(
η∗(x)ζc†(x)ξ(y)ζ(y)− ξ∗(x)ζ†(x)η(y)ζc(y)

)]
(49)

となる。

最後に tr部分から得られる imaginary partを計算する。この項により EWIMPか終状態の標準模型の粒子へ崩

壊することが可能になる。まずは式（37）の下から 3項目を計算する。diagram的に書くと 図 1のようになる。こ

の diagramの虚部を計算するために optical theorem[18]を用いて図 1の diagramを半分に切ったような diagram

を計算する。ここから先では切られる前の元の diagramをM、切った後の diagramをM として計算する。

M =

τ̃

τ̃∗

τ̃

τ̃∗

χ̃

f

f

χ̃ →M =

τ̃

τ̃∗

f

f̄

p1

p2

qχ̃

k2

k1

(50)

iM =iū(k2)
j
(
C†

1jPR + C†
2jPL

) i(/q +m)

q2 −m2 + iϵ

(
Ci

1PL + Ci
2PR

)
v(k1)i

|M |2=ū(k2)j
(
C†

1jPR + C†
2jPL

) /q +m

q2 −m2 + iϵ

(
Ci

1PL + Ci
2PR

)
v(k1)i

× v̄(k1)l
(
C†

1lPR + C†
2lPL

) /q +m

q2 −m2 + iϵ

(
Ck

1PL + Ck
2PR

)
u(k2)k

=
1

4
tr

[
/q +m

q2 −m2 + iϵ

(
Ci

1PL + Ci
2PR

) (
/k1δ

j
i −mei

j
) (
C†

1jPR + C†
2jPL

)
× /q +m

q2 −m2 + iϵ

(
Ck

1PL + Ck
2PR

) (
/k2δ

l
k +mek

l
) (
C†

1lPR + C†
2lPL

)]
=
1

4

1

(q2 −m2)2
[
4
(
|C1|2+|C2|2

)
qµkν1q

ρkσ2 (gµνgρσ − gµρgνσ + gµσgνρ)

+ 2mq · k1
(
m†

c|C1|2+mc|C2|2
)
− 4q2mcm

†
c

− 2mq · k2
(
mc|C1|2+m†

c|C2|2
)
+ 2mq · k1

(
mc|C1|2+m†

c|C2|2
)

+4m2k1 · k2|C1|2|C2|2−2mq · k2
(
m†

c|C1|2+mc|C2|2
)]

(51)
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ここでmc = Ci
1mei

jC†
2j であり、重心系をとると、p1, p2, k1, k2 はそれぞれ

p1 = (m,−pez), p2 = (m, pez)

k1 = (E,−k sin θ, 0,−k cos θ), k2 = (E, k sin θ, 0, k cos θ)

と置けるので、おおもとの diagramの虚部は

ImM =
1

2

∫
d3k1

(2π)
3

d3k2

(2π)
3

1

2Ek1

1

2Ek2

|M |2(2π)4δ4(k1 + k2 − p1 − p2)

=
1

16π

∫
dE
√
1−m2

e/E
2|M |2δ(E −m)

=
1

16π

m2(1−m2
e/m

2)3/2

(2m2 −m2
e)

2

[(
|C1|2+|C2|2

) (
m2

e +m(mc +m†
c)
)
+mcm

†
c +m2|C1|2|C2|2

]
(52)

と書ける。これより actionになおすと

Sχ̃ =
i

16π

(1−m2
e/m

2)3/2

(2m2 −m2
e)

2

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x)

×
[(
|C1|2+|C2|2

) (
m2

e +m(mc +m†
c)
)
+mcm

†
c +m2|C1|2|C2|2

]
≡Γeiei

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (53)

次に式（37）の ϕの和の部分について計算する。まずは ϕ = Aの光子が回る場合を考えていく。先ほどと同じよ

うに計算すると、

M =

τ̃

τ̃∗

τ̃

τ̃∗

τ̃

γ

γ

τ̃ →M =

τ̃

τ̃∗

γ

γ

p1

p2

qτ̃

k1

k2

(54)

iM =i(−4e2)gµν∂µτ̃ ϵνgµ
′ν′
∂µ′ τ̃∗ϵν′

−i
q2 −m2

τ̃ + iϵ

∼∂0τ̃ ϵ0∂0τ̃∗ϵ0 (55)

ここで ϵµは光子の偏極ベクトルである。光子の場合は横波のみなので式（55）の寄与は 0となる。従って、ϕが

光子以外の場合のみ考えればいいことになる。まず最初に Zボソンが回る場合を考えると

M =

τ̃

τ̃∗

τ̃

τ̃∗

τ̃

Z

Z

τ̃ →M =

τ̃

τ̃∗

Z

Z

p1

p2

qτ̃

k1

k2

(56)

→M ′ =

τ̃

τ̃∗

k1 Z

k2 Z

p1

p2

q′τ̃ (57)

20



の 2つの diagramを計算する必要がある。計算すると、

iM ∼4g2z
(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)2

∂0τ̃ ϵ
(Z)
0 (k1)∂0τ̃

∗ϵ
(Z)
0 (k2)

1

q2 −m2
τ̃

(58)

iM ′ ∼4g2z
(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)2

∂0τ̃ ϵ
(Z)
0 (k1)∂0τ̃

∗ϵ
(Z)
0 (k2)

1

q′2 −m2
τ̃

(59)

である。ここで、ϵ(Z)
µ は Zボソンの偏極ベクトルである。これを重心系で計算し、おおもとの diagramの虚部か

ら actionにやきなおすと

ImM =
1

2

∫
d3k1

(2π)
3

d3k2

(2π)
3

1

2Ek1

1

2Ek2

|M +M ′|2(2π)4δ4(k1 + k2 − p1 − p2)

=
4g4z

(
s2w − 1

2Nl̃1
iN†

l̃ i
1
)4
m6

πm4
z

(
1− m2

z

m2

)5/2
(m2 +m2

τ̃ −m2
z)

2

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (60)

→ SZ =
2ig4z

(
s2w − 1

2Nl̃1
iN†

l̃ i
1
)4
m6

πm4
z

(
1− m2

z

m2

)5/2
(m2 +m2

τ̃ −m2
z)

2

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (61)

となる。次にヒッグスが回る場合も同様に計算すると、

M =

τ̃

τ̃∗

τ̃

τ̃∗

τ̃

h0

h0

τ̃ →M =

τ̃

τ̃∗

h0

h0

p1

p2

qτ̃

k1

k2

(62)

→M ′ =

τ̃

τ̃∗

k1 h
0

k2 h
0

p1

p2

q′τ̃ (63)

iM =C2
h0

1

q2 −m2
τ̃

(64)

iM ′ =C2
h0

1

q′2 −m2
τ̃

(65)

ImM =
1

2

∫
d3k1

(2π)
3

d3k2

(2π)
3

1

2Ek1

1

2Ek2

|M +M ′|2(2π)4δ4(k1 + k2 − p1 − p2)

=
C4

h0

2π

√
1−

m2
h0

m2

1

(m2 +m2
τ̃ −m2

h0)2

従って、

Sh0 =
iC4

h0

4πm2

√
1−

m2
h0

m2

1

(m2 +m2
τ̃ −m2

h0)2

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (66)
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となる。ϕの和の部分の最後にヒッグスと Zボソンが回る場合を考える。計算していくと、

M =

τ̃

τ̃∗

τ̃

τ̃∗

τ̃

Z

h0

τ̃ →M =

τ̃

τ̃∗

Z

h0

p1

p2

qτ̃

k1

k2

(67)

→M ′ =

τ̃

τ̃∗

k1 h
0

k2 Z

p1

p2

q′τ̃ (68)

iM ∼2igz
(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)
Ch0∂0τ̃ τ̃

∗ϵ
(Z)
0 (k1)

1

q2 −m2
τ̃

(69)

iM ′ ∼2igz
(
s2w −

1

2
Nl̃1

iN†
l̃ i

1

)
Ch0∂0τ̃ τ̃

∗ϵ
(Z)
0 (k2)

1

q′2 −m2
τ̃

(70)

→ SZh0 =
16ig2z

(
s2w − 1

2Nl̃1
iN†

l̃ i
1
)2
C2

h0m

πm2
z

((
4m2 −m2

z −m2
h0

4m

)2

−
(mzmh0

2m

)2)3/2

× 1

4m2 −m2
z +m2

h0

1

(2m2 + 2m2
τ̃ −m2

z −m2
h0)2

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x)

≡ΓZ0h0

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (71)

で actionが書ける。次に式（37）の下から 4番目の項であるW, ν̃が回る diagramを計算していく。同じやり方で

M =

τ̃

τ̃∗

τ̃

τ̃∗

ν̃

W−

W+

ν̃ →M =

τ̃

τ̃∗

W−

W+

p1

p2

qν̃

k1

k2

(72)

iM ∼2g2Nl̃1
iN†

l̃ i
1∂0τ̃ ϵ

(W+)
0 (k1)∂0τ̃

∗ϵ
(W−)
0 (k2)

1

q2 −m2
ν̃

(73)

→ SW =
ig4(Nl̃1

iN†
l̃ i

1)2m6

8πm4
W

(
1− m2

W

m2

)5/2
1

(m2 +m2
ν̃ −m2

W )2

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (74)
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となる。続いて式（37）の一番下の項である C̃, ν が回る diagramを計算する。

M =

τ̃

τ̃∗

τ̃

τ̃∗

C̃

ν

ν

C̃ →M =

τ̃

τ̃∗

ν

ν̄

p1

p2

qC̃

k1

k2

(75)

iM =iū(k2)
jC†

jβPR
/q +mCα

q2 −m2
Cα

+ iϵ
δβαC

iαPLv(k1)i (76)

→ Sν =

(
CiαC†

iα

)2
32π

m2
Cα(

m2 +m2
Cα

)2 ∫ d4xη∗(x)η(x)ξ∗(x)ξ(x)

≡Γνiνi

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (77)

最後に式（37）の tr部分の最初の 1～5項目の虚部を計算していく。まず 1項目について optical theoremを用い

て同様に計算する。

M =

τ̃

τ̃∗

τ̃

τ̃∗
γ

γ

→M =

τ̃

τ̃∗

γ

γ

p1

p2

k1

k2
(78)

の diagramを計算すればよく、計算し actionになおすと、

S(4)A =i
e4

8πm2

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x)　

≡Γγγ

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (79)

となる。ここで今までの計算と違い symmetry factor 1/2をかけなければならないことに注意する。同様に式（37）

の tr部分の上から順に

S(4)AZ =i
e2g2z

(
s2w − 1

2Nl̃1
iN†

l̃ i
1
)2

4πm2

(
1− m2

z

4m2

)∫
d4xη∗(x)η(x)ξ∗(x)ξ(x)　

≡ΓγZ0

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (80)

S(4)Z =i
g4z

(
s2w − 1

2Nl̃1
iN†

l̃ i
1
)4

8πm2

√
1− m2

z

m2

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (81)

S(4)W =i
g4(Nl̃1

iN†
l̃ i

1)4

16πm2

√
1−

m2
W

m2

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (82)

S(4)h0 =i
C

(4)
h0

4

32πm2

√
1−

m2
h0

m2

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (83)

と計算できる。式（61）,（81）、式（74）,（82）、式（66）,（83）をまとめたものをそれぞれ

(61) + (81) ≡ΓZ0Z0

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (84)

(74) + (82) ≡ΓW+W−

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (85)

(66) + (83) ≡Γh0h0

∫
d4xη∗(x)η(x)ξ∗(x)ξ(x) (86)
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と定義する。最終的に actionの虚部をまとめると、

SIm. =

∫
d(xy)δ(x− y)Γη∗(x)η(x)ξ∗(x)ξ(x) (87)

ここで、Γは

Γ = Γeiei + Γγγ + ΓγZ0 + ΓZ0Z0 + ΓZ0h0 + Γh0h0 + ΓW+W− + Γνiνi
(88)

である。

以上の計算で非相対論的な effective actionSNR は式（42）,（49）,（87）より

SNR =SK.T. + SPot. + SIm. (89)

と最終的に書ける。

3.4 Two-body state effective action

最後にやることは式（89）の actionを χ̃χ̃, τ̃ τ̃ の 2体状態を表す補助場 σχ̃, στ̃ を導入し、それらの補助場以外

を integrate outすることである。これを実現するために

1 =

∫
Dστ̃Ds

†
τ̃ exp

[
i

2

∫
(xy)στ̃ (t,x,y)

(
s†τ̃ (t,x,y)− iη

∗(t,x)ξ(t,y)
)]

1 =

∫
Dσ†

τ̃Dsτ̃ exp

[
i

2

∫
(xy)σ†

τ̃ (t,x,y) (sτ̃ (t,x,y)− iξ
∗(t,y)η(t,x))

]
1 =

∫
Dσχ̃Ds

†
χ̃ exp

[
i

2

∫
(xy)σχ̃(t,x,y)

(
s†χ̃(t,x,y)−

1

2
ζ†(t,x)ζc(t,y)

)]
1 =

∫
Dσ†

χ̃Dsχ̃ exp

[
i

2

∫
(xy)σ†

χ̃(t,x,y)

(
sχ̃(t,x,y)−

1

2
ζc†(t,y)ζ(t,x)

)]
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を式（89）に挿入し、σχ̃, στ̃ 以外で integrate outすれば Two-body state effective action SII が得られる。実際
に計算すると、

SII =− i ln
∫
Ds†τ̃Dsτ̃Ds

†
χ̃Dsχ̃Dζ

†DζDη∗DηDξ∗Dξ　

× exp

[
i

2

∫
(xy)στ̃ (t,x,y)

(
s†τ̃ (t,x,y)− iη

∗(t,x)ξ(t,y)
)]
　

× exp

[
i

2

∫
(xy)σ†

τ̃ (t,x,y) (sτ̃ (t,x,y)− iξ
∗(t,y)η(t,x))

]
　

× exp

[
i

2

∫
(xy)σχ̃(t,x,y)

(
s†χ̃(t,x,y)−

1

2
ζ†(t,x)ζc(t,y)

)]
　

× exp

[
i

2

∫
(xy)σ†

χ̃(t,x,y)

(
sχ̃(t,x,y)−

1

2
ζc†(t,y)ζ(t,x)

)]
　

× exp

[
i

∫
d4xd4yζ†(x)δ(x− y)

(
i∂y0 +

∇2
y

2m

)
ζ(y)

]
　

× exp

[
i

∫
d4xd4yη∗(x)δ(x− y)

(
i∂y0 +

∇2
y

2m
− δm

)
η(y)

]
　

× exp

[
−i
∫
d4xd4yξ∗(x)δ(x− y)

(
i∂y0 +

∇2
y

2m
− δm

)
ξ(y)

]
　

× exp

[
−i
∫
d(xy)s†τ̃ (t,x,y)S

(1)
pot.sτ̃ (t,x,y)

]
　

× exp

[
i

∫
d(xy)S(2)pot.

(
−2is†τ̃ (t,x,y)sχ̃(t,x,y) + 2isτ̃ (t,x,y)s

†
χ̃(t,x,y)

)]
　

× exp

[
−i
∫
d(xy)s†τ̃ (t,x,y)Γsτ̃ (t,x,y)

]
　

=− i ln
∫
Ds†τ̃Dsτ̃Ds

†
χ̃Dsχ̃Dζ

†DζDη∗DηDξ∗Dξ　

× exp

[
i

∫
d4xd4y

(
ζ†(x) ζc†(x)

)
Kχ̃

(
ζ(y)

ζc(y)

)]
　

× exp

[
i

∫
d4xd4y (η∗(x) ξ∗(x))Kτ̃

(
η(y)

ξ(y)

)]
　

× exp

[
i

∫
d(xy)

(
s†τ̃ (t,x,y) s†χ̃(t,x,y)

)
V

(
sτ̃ (t,x,y)

sχ̃(t,x,y)

)]
　

× exp

[
i

2

∫
d(xy)

(
στ̃ (t,x,y)s

†
τ̃ (t,x,y) + σ†

τ̃ (t,x,y)sτ̃ (t,x,y) 　

+σχ̃(t,x,y)s
†
χ̃(t,x,y) + σ†

χ̃(t,x,y)sχ̃(t,x,y)
)]
　

=− iTr ln iKχ̃ − iTr ln iKτ̃ −
1

4

∫
d(xy)

(
σ†
τ̃ (t,x,y) σ†

χ̃(t,x,y)
)
V−1

(
στ̃ (t,x,y)

σχ̃(t,x,y)

)
　

=
i

2
Tr
[
K−1

0χ̃K
′
χ̃K−1

0χ̃K
′
χ̃

]
+
i

2
Tr
[
K−1

0τ̃ K
′
τ̃K−1

0τ̃ K
′
τ̃

]
　

− 1

4

∫
d(xy)

(
σ†
τ̃ (t,x,y) σ†

χ̃(t,x,y)
)
V−1

(
στ̃ (t,x,y)

σχ̃(t,x,y)

)
(90)
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ここで、式（90）の計算で出てくる記号は

Kχ̃ =

 1
2δ(x− y)

(
i∂y0 +

∇2
y

2m

)
− 1

4δ(x
0 − y0)σχ̃(x, y)

− 1
4δ(x

0 − y0)σ†
χ̃(x, y)

1
2δ(x− y)

(
i∂y0 +

∇2
y

2m

)


Kτ̃ =

 δ(x− y)
(
i∂y0 +

∇2
y

2m − δm
)

− i
2δ(x

0 − y0)στ̃ (x, y)
i
2δ(x

0 − y0)σ†
τ̃ (x, y) −δ(x− y)

(
i∂y0 − ∇2

y

2m + δm
)


V =

(
−2S(1)pot. − 2δ(x− y)Γ −4iS(2)pot.

4iS(2)pot. 0

)

K−1
0χ̃ =

(
2Sχ̃

F (x− y) 0

0 2S̄χ̃
F (x− y)

)

K−1
0τ̃ =

(
S τ̃
F (x− y) 0

0 −S̄ τ̃
F (x− y)

)

Sχ̃
F (x− y) =

∫
d4q

(2π)
4

e−iq(x−y)

q0 − |q|2/2m+ iϵ
, S̄χ̃

F (x− y) =
∫

d4q

(2π)
4

e−iq(x−y)

q0 + |q|2/2m− iϵ

S τ̃
F (x− y) =

∫
d4q

(2π)
4

e−iq(x−y)

q0 − |q|2/2m− δm+ iϵ
, S̄ τ̃

F (x− y) =
∫

d4q

(2π)
4

e−iq(x−y)

q0 + |q|2/2m+ δm− iϵ

K0 = diagK, K′ = off diagK

と定義した。式（90）の Tr部分を計算すると、

i

2
Tr
[
K−1

0χ̃K
′
χ̃K−1

0χ̃K
′
χ̃

]
=
i

2

∫
d4x1d

4x2d
3x3d

3x4
d4q1

(2π)
4

d4q2

(2π)
4

× e−iq1(x1−x2)

q01 − |q1|2/2m+ iϵ

e−iq2(x3−x4)

q02 − |q2|2/2m− iϵ
σχ̃(x

0
2,x2,x3)σ

†
χ̃(x

0
1,x1,x4) (91)

となる。ここで、重心座標系と相対座標系に分離させるために

R =

(
x02,

x2 + x3

2

)
, r = x2 − x3

R′ =

(
x01,

x1 + x4

2

)
, r′ = x1 − x4

と定義し、σχ̃ のフーリエ変換

σχ̃(r, P ) =

∫
d4Rσχ̃(t,x,y) exp

iP ·R

を使うことで、

i

2
Tr
[
K−1

0χ̃K
′
χ̃K−1

0χ̃K
′
χ̃

]
=
i

2

∫
d3rd3r′

d4q1

(2π)
4

d4q2

(2π)
4

1

q01 − |q1|2/2m+ iϵ

1

q02 − |q2|2/2m− iϵ
e−

i
2 (r−r′)·(q1+q2)

× σχ̃(r, q1 − q2)σ†
χ̃(r

′, q1 − q2) (92)

とでき、P, kを

P = q1 − q2, k =
q1 + q2

2

として計算をすれば、

i

2
Tr
[
K−1

0χ̃K
′
χ̃K−1

0χ̃K
′
χ̃

]
=
i

2

∫
d3rd3r′

d4P

(2π)
4σ

†
χ̃(r

′, P )ΥN (r′ − r, E)σχ̃(r, P ) (93)
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と計算することができる。ここで、ΥN , E はそれぞれ

ΥN (r′ − r, E) =

∫
d3k

(2π)
3

mei(r
′−r)·k

|k|2−mE
, E = P 0 − |P |

2

4m

である。同様に式（90）の 2項目について計算をすると、

i

2
Tr
[
K−1

0τ̃ K
′
τ̃K−1

0τ̃ K
′
τ̃

]
= − i

2

∫
d3rd3r′

d4P

(2π)
4σ

†
τ̃ (r

′, P )ΥC(r
′ − r, E)στ̃ (r, P ) (94)

ΥC(r
′ − r, E) =

∫
d3k

(2π)
3

mei(r
′−r)·k

|k|2−mE + 2δm

となり、これより SII は

SII =
1

2

∫
d3rd3r′

d4P

(2π)
4

(
σ†
τ̃ (r

′, P ) σ†
χ̃(r

′, P )
)( −ΥC(r

′ − r, E) 0

0 ΥN (r′ − r, E)

)(
στ̃ (r, P )

σχ̃(r, P )

)

− 1

4

∫
d3r

d4P

(2π)
4

(
σ†
τ̃ (r, P ) σ†

χ̃(r, P )
)
V−1

(
στ̃ (r, P )

σχ̃(r, P )

)
(95)

と書くことができる。これをさらに変形するために、ϕ =

(
στ̃ (r, P )

σχ̃(r, P )

)
と置いて、ϕに対する運動方程式を求め

ると、 (
∇2

r

m
+E +

1

2

(
−1 0

0 1

)
V

)
φP (r) = 0 (96)

と求められる。ただし

φP (r) = V−1

(
στ̃ (r, P )

σχ̃(r, P )

)
(97)

E =

(
E − 2δm 0

0 E

)
(98)

である。従って、最終的な actionは φP (r)のフーリエ変換を

φP (r) =

∫
d4xΦ(x, r)eixP (99)

として、

SII =

∫
d4xd3rΦ†(x, r)

(
∇2

r

m
+ i∂x0 +

∇2
x

4m
−

(
2δm 0

0 0

)
+

1

2

(
−1 0

0 1

)
V

)
Φ(x, r) (100)

となる。
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4 Annihilation cross secion

この章では式（100）のTwo-body state effective actionを用いて EWIMPの S-wave annihilation cross section

を定式化していく。optical theoremを用いると S-wave cross sectionは [8]より

σ
(S)
i = ci

32π5

m2v3
Im[M(S)

i (v)] (101)

と書くことができる。ここで、v は相対速度である。σ(S)
i は i = 2 で χ̃χ̃ の annihilation を、i = 1 で τ̃ τ̃ の

annihilationをラベルしている。さらに係数 ci は c1 = 1, c2 = 2である。そして、M(S)
i (v)は 1S0 状態から 1S0

状態への不変散乱振幅である。式（101）よりM(S)
i (v) を求めることができれば、cross section が分かるので、

M(S)
i (v)を求めていく。まず最初に式（100）から Schwinger-Dyson方程式を求めると、[

∇2
r

m
+ i∂x0 +

∇2
x

4m
− V (r) + iΓ

δ(r)

4πr

]
⟨0|TΦ(x, r)Φ†(y, r′) |0⟩ = iδ(x− y)δ(r − r′) (102)

ここでポテンシャル V (r)は

V (r) =

(
2δm− S(1)pot. −2iS(2)pot.

−2iS(2)pot. 0

)
(103)

である。ポテンシャルが rのみに依存しているのでグリーン関数をルジャンドル多項式を用いて

⟨0|TΦ(x, r)Φ†(y, r′) |0⟩ =
∫

d4P

(2π)
4 e

−iP (x−y)
∑
l

2l + 1

4π
Pl(cosγ)(−i)G(E,l)(r, r′) (104)

のように展開することができる。ここで γ は rと r′ のなす角である。従って、G(E,l)(r, r′)の満足する方程式は[
−E − 1

mr

d2

dr2
r − l(l + 1)

mr2
+ V (r)− iΓδ(r)

4πr

]
G(E,l)(r, r′) =

δ(r − r′)
r2

(105)

となることが分かる。これよりM(S)
i (v)はグリーン関数の (i, i)成分を用いて

M(S)
i (v) =

k2

4π
lim

E→k2/m

(
E − k2

m

)2 ∫ ∞

0

r2drr′2dr′j0(kr)j0(kr
′)G

(E,0)
ii (r, r′) (106)

と書ける。ここで、k = mv/2で、j0 は球ベッセル関数の 0次である。従って、S-wave cross sectionは

σ
(S)
i v = ci

2π

k2
lim

E→k2/m

(
E − k2

m

)2 ∫ ∞

0

rdrr′dr′sin(kr)sin(kr′)ImG
(E,0)
ii (r, r′) (107)

である。一般にG
(E,0)
ii (r, r′)は解析的に解くことができないので、式（105）を数値的に解く必要がある。より簡

単にするために g(r, r′) = rr′G
(E,0)
ii (r, r′)を定義して、g(r, r′)について解く。解くべき方程式は

− 1

m

d2

dr2
g(r, r′) +

[
V (r)− iΓδ(r)

4πr

]
g(r, r′)− Eg(r, r′) = δ(r − r′) (108)

である。Γの項を摂動とみなすと、leading orderでの解 g0(r, r
′)は

− 1

m

d2

dr2
g0(r, r

′) + V (r)g0(r, r
′)− Eg0(r, r

′) = δ(r − r′) (109)

を満足する。グリーン関数 G
(E,0)
ii (r, r′)に対して境界条件（i）G

(E,0)
ii (r, r′)が任意の r, r′ に対して有限となる、

(ii)|r − r′|→ ∞でG
(E,0)
ii (r, r′)は外向波のみをもつ、を課す。この境界条件の下で式（109）を解くと

g0(r, r
′) = mg>(r)g

T
<(r

′)θ(r − r′) +mg<(r)g
T
>(r

′)θ(r′ − r) (110)
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ここで、g<(>)(r)は

− 1

m

d2

dr2
g<(>)(r) + V (r)g<(>)(r) = Eg<(>)(r) (111)

を満足し、それぞれ境界条件 (i)g<(0) = 0,(ii)g′
<(0) = 1、(i)g>(0) = 1,(ii)r → ∞で外向波のみを持つ、を満足

する。Γの摂動の一次の解 g1(r, r
′)は g<(r) = g<(0) + g′

<(0)r + · · ·を用いて、

g1(r, r
′) =−

∫
dr′′g0(r, r

′′)

(
−iΓδ(r)

4πr

)
g0(r

′′, r′)

=
im2

2π
g>(r)Γg>(r

′) (112)

とかける。これより S-wave cross sectionは

σ
(S)
i v = ci

m2

2k2
lim

E→k2/m

(
E − k2

m

)2∑
a,b

ΓabAiaA∗
ib (113)

と書ける。ここで、

Aia =

∫ ∞

0

drsin(kr)[g>(r)]ia

である。τ̃ は E < 2δmの時に r →∞の極限で現れないはずなので g>(r)は

[g>(r)]ij |r→∞= δi2d2j(E)ei
√
mEr (114)

のようになるはずであるので cross sectionは簡単な形

σ
(S)
2 v =

∑
a,b

Γabd2a(mv
2/4)d∗2b(mv

2/4) (115)

で書ける。従って、cross section σ(S)を評価するためには式（111）を数値的に解いて d2j を評価する必要がある。
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5 Gamma ray flux

この章では暗黒物質の間接検出に用いられている、銀河中心からのガンマ線の fluxの計算について議論する。

ガンマ線のスペクトルの種類には line gamma rayと continuum gamma rayの 2種類ある。line gamma rayのほ

うは暗黒物質が対消滅して直接検出されるものであり、例として γγや γZ に崩壊するものがある。このタイプの

スペクトルは理論的にはピークが立つはずであるが、バックグラウンドである様々な宇宙線により見えずらくなっ

てしまう。もう一方の continuum gamma rayの例としては、暗黒物質がW ボソンに崩壊した後に πメソンが生

成され、その後に光子に崩壊する場合である。このタイプは宇宙論的なバックグラウンドがよく分かっている場

合には役立つ可能性がある。以下の議論では line gamma rayについて詳しく調べていく。

暗黒物質の対消滅からの gamma ray flux Fγ(E)は

dFγ(E)

dEdΩ
=

1

4πm2

∑
f

dN
(γ)
f

dE

⟨σv⟩f
2

∫
line of sight

dl(θ)ρ2(l) (116)

と書くことができる。ここで、θは観測者と銀河中心のなす角度で、N (γ)
f は終状態 f のエネルギー Eを持つ光子

の数を表し、⟨σv⟩は前の章で求めた対消滅の cross sectionの速度平均、ρは銀河の暗黒物質の質量密度である。角

度積分を detectorの適切な視野角で行うことによって式（116）は

dFγ(E)

dE
= 9.3× 10−12

(
100GeV

m

)2∑
f

dN
(γ)
f

dE

(
⟨σv⟩f

10−27cm3sec−1

)
J̄∆Ω[cm−2sec−1GeV−1] (117)

と計算できる。ここで detecorの角度分解能∆Ωは以下では 10−3 にとる。J̄ は

J̄ =

∫
line of sight

dl(θ)

8.5kpc

∫
∆Ω

dΩ

∆Ω

( ρ

0.3GeVcm−3

)2
(118)

と定義した。これより Fγ(E)を見積もるためには ⟨σv⟩、dN
(γ)
f

dE 、ρの 3つの量を知る必要がある。⟨σv⟩について

はすでに求めてあるので
dN

(γ)
f

dE について考える。終状態が光子だけを考えるならとても簡単に求めることができ

る。今考えているシナリオでは暗黒物質は非相対論的に運動していると考えているので、

dN
(γ)
f

dE
= 2δ(E −m) (119)

ととても簡単な形になる。最後に ρについては様々な暗黒物質の分布の簿デルが存在するがここではNFW plofile[9]

を用いることにする。NFW plofileでは

ρNFW (r) =
ρ0

(r/α)(1 + r/α)2
(120)

の形をとり、ρ0 と αは銀河による定数である。そして以下の数値計算では妥当な値として J̄ = 1352[10]を用い

る。さらにほかの有名な plofileの種類として、Einasto plofile[16]や Burkert plofile[17]がある。それぞれ

ρEinasto(r) =ρ0

[
− 2

γ

(( r
α

)γ
− 1
)]

(121)

ρBurkert(r) =
ρ0

(1 + r/α)(1 + (r/α)2)
(122)

NFWと Einasto plofileにおいてはよく α = 20kpc、γ = 0.17が用いられる。
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6 Numerical result and conclusion

この章では cross sectionと gamma ray fluxの数値計算の結果と、cross sectionを計算するために用いた方法に

ついて述べる。cross sectionを計算するためには、4章の最後でも述べたように式（111）を g>(r)について境界

条件 (i)g>(0) = 1,(ii)r → ∞で外向波のみを持つ、の下で解けばよい。このような 2点境界値問題を数値的に解

くには初期値問題と違い何度も反復して解を探さなければならない。解く方法として狙い撃ち法と緩和法 [11]が

ある。狙い撃ち法とはある一つの境界点におけるすべてのパラメータの値をランダムに決め、微分方程式を解い

ていき、もう片方の境界での値を求める。得られた値と、境界条件との値の差を減らすように最初の境界で用い

たパラメータを調節し、ずれが 0となるように反復して解く方法である。

もう一つの緩和法とは、解を求める範囲内をすべてメッシュ点上での差分方程式に置き換え、メッシュ点上で

のすべての値を調節することで、差分方程式と境界条件を同時に満足するような値に近づけるように反復する方

法である。メッシュ点をたくさん用意すればするほどこの方法では計算量が多くなるため狙い撃ち法より効率が

悪いのではと思われるが [11]によると、境界条件が繊細かつ微妙な時には緩和法は効率的である。実際、今考え

たい微分方程式に対しても緩和法ではたった 2回程度の反復で解が収束した。

式（111）を緩和法を用いて解いて、得られた [g>(r)]ij は以下のようになる。
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図 9: v/c = 0.001, δm = 0.01(GeV), m = 1200(GeV)の時の [g>(r)]ij の概形。1段目の左が [g>(r)]00 の実部、

右が虚部を表し、2段目の左が [g>(r)]01の実部と虚部を、右が [g>(r)]10の実部と虚部を、一番下が [g>(r)]11の

実部と虚部を表す。

32



図 10: v/c = 0.001, δm = 0.00321(GeV), m = 452(GeV)の時の [g>(r)]ij の概形。1段目の左が [g>(r)]00 の実

部、右が虚部を表し、2段目の左が [g>(r)]01の実部と虚部を、右が [g>(r)]10の実部と虚部を、一番下が [g>(r)]11

の実部と虚部を表す。
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図 11: v/c = 0.003, δm = 0.00321(GeV), m = 380(GeV)の時の [g>(r)]ij の概形。1段目の左が [g>(r)]00 の実

部、右が虚部を表し、2段目の左が [g>(r)]01の実部と虚部を、右が [g>(r)]10の実部と虚部を、一番下が [g>(r)]11

の実部と虚部を表す。

図 9、10、 11を見ればわかるように、得られた解は境界条件をきちんと満足していることが分かる。さらにm

をパラメータとして式（115）から cross sectionを計算すれば以下の結果が得られる。
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図 12: v/c = 0.001, δm = 0.01(GeV)の時、対消滅で光子へ崩壊する場合の cross section

図 13: v/c = 0.001, δm = 0.00321(GeV)の時、対消滅で光子へ崩壊する場合の cross section
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図 14: v/c = 0.003, δm = 0.00321(GeV)の時、対消滅で光子へ崩壊する場合の cross section
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さらに得られた cross sectionを用いて式（117）から銀河中心からの光子の fluxを計算すれば以下のようになる。

図 15: v/c = 0.001, δm = 0.01(GeV)の時、銀河中心からの暗黒物質の対消滅からの光子の flux

図 16: v/c = 0.001, δm = 0.00321(GeV)の時、銀河中心からの暗黒物質の対消滅からの光子の flux
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図 17: v/c = 0.003, δm = 0.00321(GeV)の時、銀河中心からの暗黒物質の対消滅からの光子の flux

これらの計算をするときに用いたパラメータのうち vと δm = 0.00321(GeV)以外は [12]で得られた値を用いてい

る。ただし、暗黒物質の質量を増やした時に生じるパラメータの変化については考えていない。そして、v = 0.003

と δm = 0.00321(GeV)の値は enhanceがm = 400(GeV)付近に起こるように調節した値である。具体的に用い

た値を以下の表にまとめておく。
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parameter value

g 0.6387

g′ 0.3623

s2w 0.23

m 379.596576(GeV)

mτ̃ 379.606567(GeV)

mw 80.2(GeV)

mz 91.19(GeV)

mh0 125.18(GeV)

µ 1766.53(GeV)

me 0.511× 10−3(GeV)

mµ 0.105(GeV)

mτ 1.776(GeV)

mC1
725.76(GeV)

tanβ 24.21

cotα -24.21

y1
1 1.0× 10−5

y2
2 1.5× 10−2

y3
3 0.2542

v 243.5786(GeV)

A0 -3098.1(GeV)

表 1: 数値計算で用いた具体的なパラメータの値。ここでの vはヒッグスの真空期待値に関するもので v2 = v2u+v
2
d

で定義される。

ReNl̃A
B B=1 B=2 B=3 B=4 B=5 B=6

A=1 -6.31168044×10−9 2.63719358× 10−6 −1.71009221× 10−1 6.25408690× 10−11 −5.57777646× 10−8 −9.85269428× 10−1

A=2 −4.88052654× 10−6 −1.47061845× 10−2 1.26260288× 10−5 −2.05256544× 10−8 −7.02536796× 10−1 −2.18090514× 10−6

A=3 −1.68078331× 10−5 −2.88036700× 10−8 −1.53915085× 10−10 −1.65361745× 10−1 2.67385497× 10−8 −4.95673580× 10−11

A=4 1.00627884× 10−7 −5.03237436× 10−5 9.85269426× 10−1 −3.17467808× 10−10 1.00201302× 10−5 −1.71009221× 10−1

A=5 6.62240877× 10−2 6.99028792× 10−1 7.13839275× 10−5 −6.76095272× 10−6 −1.46315410× 10−2 −8.58412190× 10−6

A=6 −8.24980621× 10−1 5.55284568× 10−2 5.85237100× 10−6 8.39260849× 10−5 −1.15816598× 10−3 −7.02385695× 10−7

ImNl̃A
B B=1 B=2 B=3 B=4 B=5 B=6

A=1 −6.69074517× 10−9 2.68186615× 10−6 −3.36466824× 10−15 −6.50682427× 10−11 −7.01708566× 10−8 4.44552436× 10−23

A=2 3.55520850× 10−6 −1.48888937× 10−2 −5.52344800× 10−8 1.51693448× 10−8 −7.11339651× 10−1 6.71707263× 10−16

A=3 1.00325957× 10−4 −4.18395754× 10−10 2.93857601× 10−10 9.86232976× 10−1 6.16275932× 10−10 1.39096557× 10−17

A=4 1.44670207× 10−7 −5.11527461× 10−5 1.15540529× 10−12 7.71687277× 10−11 1.02274109× 10−5 −9.52745431× 10−21

A=5 −4.78727158× 10−2 7.10102998× 10−1 −8.62478816× 10−9 4.88605503× 10−6 −1.48648974× 10−2 1.39571889× 10−17

A=6 5.59222261× 10−1 5.99258994× 10−2 3.23933295× 10−10 −5.68738081× 10−5 −1.24999822× 10−3 1.05557136× 10−18

表 2: sleptonの質量行列を対角化するためのユニタリ行列。上段が実部で下段が虚部をそれぞれ表す。
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ReNG̃a
b b = 1 b = 2 b = 3 b = 4

a = 1 9.99599220× 10−1 −2.13656993× 10−3 2.72724410× 10−2 −7.28340424× 10−3

a = 2 3.78724402× 10−3 9.98231872× 10−1 −5.41258402× 10−2 2.42730150× 10−2

a = 3 −2.23811821× 10−17 4.82387775× 10−17 6.11227032× 10−16 −6.11568206× 10−16

a = 4 2.42682988× 10−2 −5.55057268× 10−2 −7.05176402× 10−1 7.06439245× 10−1

ImNG̃a
b b = 1 b = 2 b = 3 b = 4

a = 1 −5.13227991× 10−16 2.88642911× 10−19 −1.03992019× 10−17 −1.74565311× 10−18

a = 2 −1.78170707× 10−18 −2.33972913× 10−16 5.73625399× 10−18 1.43366353× 10−18

a = 3 1.40749921× 10−2 −2.11584124× 10−2 −7.06436727× 10−1 −7.07319847× 10−1

a = 4 5.84094614× 10−18 −8.37388039× 10−18 −6.12074422× 10−16 −6.13058014× 10−16

表 3: gauginoの質量行列を対角化するためのユニタリ行列。上段が実部で下段が虚部をそれぞれ表す。

ReU i
j j = 1 j = 2

i = 1 −9.97043970× 10−1 7.68330827× 10−2

i = 2 7.68330827× 10−2 9.97043970× 10−1

ImU i
j j = 1 j = 2

i = 1 −2.92376714× 10−16 9.05483611× 10−18

i = 2 −4.61092153× 10−17 −7.73222256× 10−16

ReV i
j j = 1 j = 2

i = 1 −9.99396601× 10−1 3.47337437× 10−2

i = 2 3.47337437× 10−2 9.99396601× 10−1

ImV i
j j = 1 j = 2

i = 1 7.74343187× 10−16 0.00000000× 100

i = 2 0.00000000× 100 7.74343187× 10−16

表 4: charginoの質量行列を対角化するためのユニタリ行列。左側が実部で右側が虚部をそれぞれ表す。

最後に、HESSや Fermi Latなどによる観測による最新の暗黒物質に対する制限を見る。

図 18: HESS[13]による暗黒物質への制限。左図が fluxに対する制限で、右図が cross sectionに対する制限を表

す。両方とも Einasto profileを用いている。([13]より引用)
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図 19: 他の観測との cross sectionへの制限の比較。赤点と青点がそれぞれ [13]の Einasto profile、NFW profile

による制限を表す。緑の三角がMAGICによる制限を表す [14]。黒の三角が Fermi-LATによる制限を表す [15]。

([13]より引用)

これらの実験結果とこの論文で得られた結果は仮定している状況が同じではないので単純に比較することは

できないが、ある程度の指標にはできる。cross section、fluxについて比べてみると、cross sectionについては

δm = 0.00321(GeV)の場合 m = 380(GeV)付近では制限に引っかかっているかギリギリである。fluxについて

は、制限には引っかかっていないことが分かる。従って、将来、観測技術やバックグラウンドを取り除く方法など

が進化すれば、暗黒物質が間接検出により発見される可能性は充分あるといえる。ただし、δmを [12]で得られた

値からずらしてしまったので、coannihilation機構により暗黒物質の残存量が観測と矛盾してくる可能性がある。

今回はこの効果については計算できなかったので、残存量がどれくらい影響を受けるかについてを計算しなけれ

ばならない。

本論文では暗黒物質を説明する模型として、MSSMの範囲で、LSP neutralinoを暗黒物質、NLSPとして質量

が縮退している粒子を sleptonで考えた。この模型を考えた時に生じ得る、Sommerfeld enhancementの効果を計

算した。[12]で得られたパラメータではこの効果は暗黒物質の質量が 1TeV付近で生じたが、δm = 0.00321(GeV)

となれば、400GeV付近でエンハンスを生じることが分かった。今回は計算していないが、δmをいじることで残

存量などの他の条件を満足しなくなる可能性がある。今後はそこのところの計算もやらなけらばならない。
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Appendix

Coannihilation

観測技術の発達により暗黒物質の質量への制限はどんどんと厳しくなっている。この制限を回避するために質

量を大きくしすぎてしまうと、cross sectionが小さくなってしまい、暗黒物質の残存量が多すぎてしまう。そこ

で coannihilationを考えることで観測からの制限と矛盾しないパラメータ領域を広げることができる。ここでは

coannihilationについて詳しく見ていく。

まず coannihilationを考えるべき状況は暗黒物質の他に暗黒物質と質量が同程度の粒子が存在する状況である。

暗黒物質と、質量が縮退している粒子をそれぞれ χ1, χi(i > 1)とラベルし、それらの質量をmi(i = 1, 2, · · ·)と
する。ここで、質量の軽い順にラベルしているものとする。χi の数密度を考えた時に、初期宇宙においてそれら

の量を決める反応は標準模型の粒子をX としたとき

χiχj ↔XX ′ (123)

χiX ↔χjX
′ (124)

χj ↔χiXX
′ (125)

である。これらの反応を考慮したボルツマン方程式は χi, X の個数密度を ni, nX としたとき

dni
dt

= −3Hni −
∑
j,X

[⟨σijv⟩(ninj − neqi n
eq
j )− (⟨σ′

ijv⟩ninX − ⟨σ′
jiv⟩njnX′)− Γij(ni − neqi )] (126)

と書ける。ここで、H はハッブルパラメータで、neqi は熱平衡状態での数密度である。cross sectionと decay rate

はそれぞれ

σij =σ(χiχj → XX ′) (127)

σ′
ij =σ(χiX → χjX

′) (128)

Γij =Γ(χi → χjXX
′) (129)

と定義した。ボルツマン方程式の右辺一項目は宇宙の膨張による効果を表していて、二項目以降はそれぞれの反応

による効果を表している。最終的に残った χi も χ1 に崩壊していくので、χi の全数密度 n =
∑
ni が必要になっ

てくる。従って、ボルツマン方程式は

dn

dt
= −3Hn−

∑
i,j

⟨σijv⟩(ninj − neqi n
eq
j ) (130)

と書きなおすことができる。

次に得られたボルツマン方程式を一粒子の時の方程式の形に落とし込むために必要な重要な仮定 ni/n ∼ neqi /neq

を正当化するためには、全粒子数密度 nを変える反応 χiχj ↔ XX ′がほかの反応よりも弱いと言えればよいので、

反応率の違いについてみていく。χiX ↔ χjX
′ の反応率との比を考えると、

nX/nj ∼ (T/mj)
3/2 exp(mj/T ) ∼ 109 (131)

となり、χiX ↔ χjX
′ の反応のほうがとても強いことが分かる。χj ↔ χiXX

′ の反応は一般的に他の反応よりも

強いので先ほどの仮定 ni/n ∼ neqi /neq は正当であるといえる。この仮定を用いてボルツマン方程式をもう一度書
きなおすと、

dn

dt
= −3Hn− ⟨σeffv⟩(n2 − neq2) (132)
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ここで、

σeff =
∑
ij

σij
gigj
g2eff

(1 + ∆i)
3/2(1 + ∆j)

3/2 exp[−x(∆i +∆j)]

∆i = (mi −m1)/m1

geff =
∑
i

gi(1 + ∆i)
3/2 exp(−x∆i)

であり、gi は χi の自由度である。

書き直したボルツマン方程式を用いて、適切な freez out時の温度 xf を見積もると、

xf = ln
0.038geffmplm1⟨σeffv⟩

g
1/2
∗ x

1/2
f

(133)

となり、これを用いて残存量は

Ωh2 ∼ 1.07× 109xf

g
1/2
∗ mpl(a11Ia + 3b11Ib/xf )

(134)

と書ける。ここで、a11, b11は cross sectionを展開したときの係数で σij = aij + bijv
2であり、Ia, Ibはそれぞれ

σeff を展開したときの係数 σeff = aeff + beffv
2 を用いて、

Ia =
xf
a11

∫ ∞

xf

x−2aeffdx

Ib =
2x2f
b11

∫ ∞

xf

x−3beffdx

である。
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緩和法

ここでは式（111）を数値計算するときに用いた、2点境界値問題を解くためのアルゴリズムである緩和法につ

いてまとめる。1階の N元連立微分方程式

dyi

dx
= g(x,yi) (135)

が点 x1 で n1 個の境界条件を、点 x2 で残りの境界条件 n2 = N − n1 個の境界条件を満足する問題を考える。ま
ずはこの境界の間を k = 1, 2, · · ·M のM個のメッシュ点で分割する。さらに、微分方程式をこのメッシュ点上で

の差分方程式に置き換える例として、

0 = Ek = yk − yk−1 − (xk − xk−1)gk(xk, xk−1,yk,yk−1) k = 2, 3, · · ·M (136)

のようにすることができる。さらに境界の端では境界条件として

0 = E1 = B(x1,y1) (137)

0 = EM+1 = C(xM ,yM ) (138)

を満足する。ここで、のちの計算都合上Bの持つ 0でない成分 n1個を最後の成分に、C の持つ 0でない成分 n2

個を最初の成分とする。ここまでのことを具体的に式（111）に即して考えると、この微分方程式は [g>]ij の列に

ついて独立なものとなっているため、考えるのは 1階の 8元連立微分方程式を異なる境界条件で 2回解くことと

同義となる。式 (111)の一列目については、

y1,k =Re[g>(xk)]00 (139)

y2,k =Re[g>(xk)]10 (140)

y3,k =Im[g′>(xk)]00 (141)

y4,k =Re[g′>(xk)]10 (142)

y5,k =Im[g>(xk)]00 (143)

y6,k =Im[g>(xk)]10 (144)

y7,k =Re[g′>(xk)]00 (145)

y8,k =Im[g′>(xk)]10 (146)

とおいた。無限遠での境界条件より、ボーア半径の逆数をK として、

E1,1 = E2,1 = E3,1 = E4,1 = 0 (147)

E5,1 = Ky1,1 + y7,1 (148)

E6,1 = y8,1 −
√
mEy2,1 (149)

E7,1 = Ky5,1 + y3,1 (150)

E8,1 = y4,1 +
√
mEy6,1 (151)

とし、原点での境界条件から、

E1,M+1 = y1,M − 1 (152)

E2,M+1 = y2,M (153)

E3,M+1 = y5,M (154)

E4,M+1 = y6,M (155)

E5,M+1 = E6,M+1 = E7,M+1 = E8,M+1 = 0 (156)
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とおいた。

続いて、初期推量の値 yk を与えた後により解に近づくようにするためのアルゴリズムを考える。考え方として

は、ykを少しずらした値 yk+∆ykが式（136）～（138）を満足するようになれば良い。つまり、境界の内点では、

Ek(yk +∆yk,yk−1 +∆yk−1) ∼ Ek(yk,yk−1) +

N∑
n=1

∂Ek

∂yn,k−1
∆yn,k−1 +

N∑
n=1

∂Ek

∂yn,k
∆yn,k = 0

→
N∑

n=1

Sj,n∆yn,k−1 +

2N∑
n=N+1

Si,n∆yn−N,k = −Ei,k, i = 1, 2, · · ·N (157)

となる。ここで、Si,n はN × 2N の行列で

Si,n =
∂Ei,k

∂yn,k−1
, Si,n+N =

∂Ei,k

∂yn,k
, n = 1, 2, · · ·N

と定義される。境界でも同じような議論により、最初の境界では

N∑
n=1

Si,n∆yn,1 = −Ei,1, i = n2 + 1, n2 + 2, · · ·N (158)

となる。ここで、

Si,n =
∂Ei,1

∂yn,1
, n = 1, 2, · · ·N

である。もう片方の境界では、

N∑
n=1

Si,n∆yn,M = −Ei,M+1, i = 1, 2, · · ·n2 (159)

となる。ここで、

Si,n =
∂Ei,M+1

∂yn,M
, n = 1, 2, · · ·N

である。式（157）～(159）の連立一次方程式を ∆yn,k が十分小さくなるまで反復すればよい。具体的に、N =

5,M = 4, n1 = 3, n2 = 2の場合の解くべき行列の形を書くと、

最初の境界

k = 2

k = 3

k = 4

最後の境界


Si,n(3× 5)

Si,n(5× 5) Si,n+N (5× 5)

Si,n(5× 5) Si,n+N (5× 5)

Si,n(5× 5) Si,n+N (5× 5)

Si,n(2× 5)

∆yn,k =


−Ei,1

−Ei,2

−Ei,3

−Ei,4

−Ei,5

 (160)

となる。ここで、式（137）、（138）で 0の成分を調整したことで、式（160）の最初の境界と最後の境界での行数

を減らせていることが分かる。あとはこの行列を行基本変形を用いて対角成分が全て 1となるようにすることが

できれば、後退代入により簡単に∆yn,k を求めることができる。以上が緩和法のアルゴリズムである。
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