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1 introduction

我々の宇宙を成り立たせている物質成分、エネルギー成分はどのような密度構成になっ

ているのか？この質問はアインシュタイン方程式が登場して以来、宇宙の研究に携わる者達

を悩ませてきたものである。その理由の１つとして、この密度構成を明らかにすることが

出来れば宇宙の幾何構造、ひいては宇宙の過去、現在、未来の姿が解明できるからである。

近年、観測技術の進歩により、この宇宙は一様等方的で曲率がほぼ 0の幾何構造を持つ、と

いうことが明らかにされた。しかし、それと同時に、物質成分の大半は目に見えない何か、

すなわち dark matterや dark energyで構成されていることも明らかになった。観測によ

るこの結果が出る以前から、dark matterの存在は理論的に予測されており、これまでに

数多くの研究がなされてきた。それにより dark matterの候補が宇宙論的なスケールのも

のから、素粒子的なものまで様々なものが考え出されてきたが、どれもまだ決定的な証拠

は得られていない。この論文では、dark matter候補としてWeekly Interraction Massive

Particles(WIMPs)、特に超対称性理論における素粒子の１つである neutralinoを考える。

次のセクションでは、dark matterを研究するうえで基礎となる標準宇宙論について触

れ、それに関連して論じられてきた dark matterの存在証拠と考えられてきた多数のもの

の一部を見ていく。セクション 3においては、これまでにどのような素粒子的 dark matter

が研究されてきたのかを論じていく。セクション 4では、dark matterの relic abundance

計算の標準的なものと、特別な修正が必要な 3つの場合についてを考えていき、セクショ

ン 5でその 3つの中の１つに注目した応用を調べていく。
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2 dark matterの存在証拠

2.1 標準宇宙論

dark matterの存在証拠について考えていく前に、まずは、dark matterの存在を予測す

る上で土台となる標準宇宙論についてみていく。ここではモデルとしてBig Bang scenario

を採用して考えていく。このモデルは

• 宇宙が誕生時の超高温状態から冷えていくにしたがって移り変わっていく様子

• 宇宙背景放射の存在

• Big Bang Nucleosynthesis(BBN)と呼ばれる元素合成により生成される軽元素量の

予言

• 銀河や銀河団がどのように造られてきたのかを表わす大規模構造

などをうまく説明しうる、非常に完成度の高いモデルである。セクション 3でも議論する

ように、dark matterの性質を考えていく上で大規模構造の詳細が重要になるので、ここ

でもう少し詳しく見ていく。大規模構造には大きく分けて２つのシナリオがある。１つは

top-down型構造形成と呼ばれるものである。これは、まずはじめに超銀河団のような大

きな塊が造られ、それが銀河団などのより小さなスケールのものに分かれていく。そして

最終的に今の宇宙の構造を造りあげるというものである。もう１つは bottom-up型構造形

成と呼ばれるものである。これは、top-down型とは逆に、はじめに銀河などの小さな構造

が造られ、それらが集まっていきより大きな構造の銀河団などを造っていくというもので

ある。

上で見たような宇宙論モデルをつくりあげていくために必要となるのは以下に記す 3つ

の根本的指針である：

• アインシュタイン方程式（⇒ 宇宙の幾何学構造と宇宙に含まれる物質成分、エネル

ギー成分を関係づける）

• メトリック（⇒ 宇宙の幾何構造を決定）

• 状態方程式（⇒ 物質成分、エネルギー成分の物理的性質を特定）

ここに出てきたアインシュタイン方程式は次の 3つの条件のもとで導かれる：

� 一般座標変換のもとで方程式不変

� 弱重力の極限のもとでニュートンの重力則に一致

� ２階の微分方程式

これらの条件のもとで導かれたアインシュタイン方程式は次式のようになる：

Rµν − 1
2
gµνR = −8πGN

c4
Tµν + Λgµν (1)
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　　　　　　 gµν =⇒ メトリックテンソル

　　　　　　GN =⇒ ニュートンの重力定数

　　　　　　 Tµν =⇒ エネルギー運動量テンソル

　　　　　　 Λ =⇒ 宇宙定数

ここで、Rµν、Rはそれぞれリッチテンソル、リッチスカラーと呼ばれるものであり、リー

マンの曲率テンソルを用いて次式で定義される：

Rνσ ≡ Rµ
νµσ

R ≡ Rνσgνσ
(2)

また、曲率テンソルの表式における Γµ
νσ はクリストッフェル記号と呼ばれるものであり、

計量 gµν を用いて以下のように表わされる：

Γµ
νρ =

1
2
gµλ(∂νgϱλ + ∂ρgνλ − ∂λgνρ) (3)

(1)式における宇宙定数の表わすものは、物質成分ではなく、むしろ時空そのものに関連

する”真空のエネルギー”であると考えられる。type Ia型超新星爆発やCMBの解析が正

しいとすると、この”真空のエネルギー”は宇宙の幾何構造を考えていくうえで重要な役

割を果たしていることになる。しかしこの先では、解析のシンプル化のために、宇宙定数

の項は除いて議論を進めていく。

(1)式のアインシュタイン方程式をとくために、宇宙の一様等方性を仮定する。(補足とな

るが、実際、宇宙はほぼ一様等方であることがWMAPなどの解析により分かっている。)

この一様等方性の仮定により次式の線素が導かれる：

ds2 = −c2dt2 + a2(t)(
dr2

1 − kr2
+ r2dΩ2) (4)

　　　　　　 a(t) =⇒ スケールファクター

　　　　　　 k =⇒ 空間的曲率（－ 1 or 0 or +1）

このメトリックを用いてアインシュタイン方程式を解き、その第０成分をとることにより

フリードマン方程式が得られる：

(
ȧ

a
)2 +

k

a2
=

8πGN

3
ρtot (5)

　　　　　　 ρtot =⇒ 宇宙の全エネルギー密度

　　　　　　ハッブルパラメーターH(t) = ȧ/a
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このフリードマン方程式から、空間的曲率 kが 0になるときの密度は簡単に求めることが

できる：

ρc =
3H2

8πGN

(6)

これは臨界密度と呼ばれるものである。この臨界密度を用いて、あるエネルギー寄与物質

i(i ⇒ 物質成分、輻射成分、真空のエネルギー)からの寄与の度合を表わす量として次式を

定義する：

Ωi ≡
ρi

ρc

Ω = ΣiΩi ≡ Σi
ρi

ρc

(7)

Ωを用いて書き直すと、フリードマン方程式は次のようになる：

Ω − 1 =
k

H2a2
(8)

ここで注目すべき点はΩが 1以下か 1以上かで kの符号が決まる、ということである。す

なわち、kが正であるか負であるかによって宇宙の時間発展は大きく変わってくる、とい

う事を意味している。各Ωiは別々に時間発展し、その表式を用いると宇宙の時間発展、す

なわち膨張率の一般式が次のように表わされることになる：

H2(z)
H2

0

= ΩX(1 + z)3(1+αX)+Ωk(1 + z)2 + ΩM (1 + z)3 + ΩR(1 + z)4

Ωk =
−k

a2
0H

2
0

(9)

　　X =⇒状態方程式 pX = αXρX を持つ成分からの寄与を表わす指標

(10)式において使われている zは銀河の赤方偏移を表わすファクターであり、ハッブルの

法則によって距離 rの銀河（一般的には銀河に限らずあらゆる天体）の zは

z =
H0

c
r (10)

となる。ここでH0は現在のハッブルパラメーターの値、cは光速を表わす。

これらの理論式と、宇宙年齢や宇宙の平坦性の観測の結果から現在の宇宙の成分の割合

が下図のようになっていることがわかっている。この図を見て分かるように、物質成分の

大半は dark matterで占められている。言い換えれば、宇宙の構造を理解するうえで dark

matterの解析は避けては通れぬ道となっている、ということである。

2.2 銀河スケールにおいての dark matterの存在証拠

前のサブセクションでは、理論的には dark matterが必要になる、という事を見た。し

かし、我々の宇宙において実際に dark matterの存在を示す証拠となるものはあるのであ
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図 1: 宇宙の密度成分の割合（WMAPのホームページより引用）

ろうか？ここでは、銀河スケールでこの dark matterの存在証拠についてを見ていくこと

にする。

dark matterの存在を確かめる 1つの方法は、見える物質に作用する重力の影響を調べ

ることである。具体的によく知られている方法はM31や銀河系のような渦巻銀河の星の軌

道速度を測ることである。銀河中心を回る円軌道上の星に注目する。この星の軌道半径を

R、軌道速度を vとすると、銀河中心方向の加速度と星に働く遠心力の釣り合いから次式

が成り立つ：

v =

√
GM(R)

R
(11)

　　　　　M(R) =⇒銀河中心から半径Rの球に含まれる全質量

ところで、渦巻銀河の円盤の表面輝度 I は典型的に中心からの距離と共に指数的に減少し

ていくことが知られている：

I(R) = I(0)exp[− R

Rs
] (12)

　　　　Rs =⇒スケール長さ

　　　　　　　これは典型的に数 kpc(例：銀河系　Rs ≈ 4kpc)

この式は、一旦、中心からスケール長さの 2∼3倍離れてしまえば半径Rの中の星の全質量

は一定になる、という事を意味している。この事と (12)式とを合わせて考えると、星が銀

河の質量のほとんどまたは全てを担っているならば、軌道速度 vは大きな半径 (R ≥ 3Rs)

で v ∝ 1/
√

Rのように遅くなっていくはずである。

ところが、下の図から見てわかるように大きな半径で見られるはずの軌道速度 vの遅れ

が観測においては見られない。つまり、大きな半径における星やガスの軌道速度は、星と
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ガスだけが物質であるとした場合よりも大きい、ということになる。この事から、見えて

いる銀河の円盤部分を取り巻いている、なにか目に見えない物質、すなわちダークハロー

の存在が推測できる。このダークハローの質量は、高速の星やガスが銀河間空間に飛び去っ

てしまわないために必要な重力の『錨』となっている。

図 2: 銀河の回転曲線（www-utap.phys.s.u-tokyo.ac.jpより引用）

2.3 銀河団スケールにおいての dark matterの存在証拠

歴史的に dark matterの存在が初めて主張されたのは、実はこの銀河団スケールにおい

てであった。時は 1930年代、発案者はスイスの天文学者 Fritz Zwickyであり、その主張

は次のようなものであった：

『銀河団から銀河が飛び去っていかないようにするためには、引き止める重力源、す

なわち dark matterが大量にあるはず』

Zwickyの主張を数学的に考察するために N個の銀河からなる銀河団を考える。各々の

銀河を質点とみなして調べていく：

　　　　　　　　　位置：x⃗i(i = 1, 2, ..., N)

　　　　　　　　　速度： ˙⃗xi(i = 1, 2, ..., N)
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銀河団は孤立した系であり、銀河団外の質量は無視できると仮定すると、i番目の銀河の加

速度は次式で表わされることになる：

¨⃗xi = GΣjmj
x⃗j − x⃗i

| x⃗j − x⃗i |
(13)

ただし、和の jは i以外についてとるものとする。お互いに離れた N個の銀河を引っぱっ

て集めるために必要なエネルギー、すなわち、N個の銀河からなる系の重力ポテンシャル

エネルギーは次の式で表わされる：

W = −1
2
GΣi,j

mimj

| x⃗j − x⃗i |
(14)

ここでファクター 1
2 は i、jの二重数えの分を打ち消すものである。この重力ポテンシャル

エネルギーは以下のように別の表わし方をすることも出来る：

W = −α
GM2

rh

(15)

　　　　M = Σmi

　　　　 α =⇒銀河団の密度の形状に関する数値係数

　　　　　（観測から α ≈ 0.4が最もよく合うことがわかっている）

　　　　 rh =⇒銀河団の半値質量半径

　　　　　（すなわち、銀河団の重心を中心とした質量M/2を含む半径）

また、銀河団中の銀河の相対運動の運動エネルギーは、銀河団内の銀河全てについての二

乗平均速度< v2 >を使うと、次式のようになる：

K =
1
2
Σimi | ˙⃗xi |2

=
1
2
M < v2 >

< v2 > =
1
M

Σimi | ˙⃗xi |2

(16)

これらのエネルギーと、銀河団の慣性モーメント I

I ≡ Σimi | x⃗i |2 (17)

を用いて、銀河団の質量に関する関係式を以下のようにして導いていく：

Ï = 2Σimi(x⃗i · ¨⃗xi + ˙⃗xi · ˙⃗xi)

= 2Σimi(x⃗i · ¨⃗xi) + 4K

= 2[
1
2
[Σimi(x⃗i · ¨⃗xi) + Σjmj(x⃗j · ¨⃗xj)]] + 4K

= 2[
1
2
[GΣi,jmimj

x⃗i · (x⃗j − x⃗i)
| x⃗j − x⃗i |3

− GΣi,jmimj
x⃗j · (x⃗j − x⃗i)
| x⃗j − x⃗i |3

]] + 4K

= 2[
1
2
[−GΣi,jmimj

| x⃗j − x⃗i |2

| x⃗j − x⃗i |3
]] + 4K

= 2W + 4K

(18)
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ここでは、銀河団は孤立した系であると考えているので慣性モーメント Iは一定である。

よって上の結果より

K = − W

2
⇓

1
2
M < v2 > =

α

2
GM2

rh

(19)

したがって、銀河団の質量の評価式として次式が得られることになる：

M =
< v2 > rh

αG
(20)

しかし、この式の形だけでは実際に銀河団の質量を評価することは出来ない。上で得ら

れた評価式を実在の銀河団に適用しようとすると、大きな困難があることに気付く。それは

< v2 >と rhの正確な値が分からないということである。しかし、幸運なことに、< v2 >に

関しては以下で見ていくようにある程度知ることはできる。ここからは、発案者の Zwicky

が当時対象としていたかみのけ座銀河団を例に考えていく。かみのけ座銀河団の中の銀河

の平均赤方偏移は、測定から、以下のようになることが分かっている：

< z >= 0.0232 (21)

これを動径速度に換算すると

< vr >= c < z >= 6960kms−1 (22)

となり、これを用いると動径方向の速度分散はつぎのように求められる：

σr =< (vr− < vr >)2 >
1
2 = 880kms−1 (23)

ここで、速度分散が等方的であるとすると、3次元の二乗平均速度< v2 >は 1次元の二乗

平均速度の 3倍に等しいと考えることができるので、結果として次式が得られる：

< v2 >= 3 × (880kms−1)2 = 2.32 × 1012m2s−2 (24)

二乗平均速度< v2 >についてはこれを用いれば良いであろう。しかし、銀河団の半値質

量半径 rhの評価は二乗平均速度よりもかなり難しい。なぜなら、最終的に求めたいものは

dark matterの全質量なのだが、rhを求めるためにはこの dark matterの全質量の値が必

要となるからである。しかたないので、質量光度比が半径方向について一定であり、銀河

団の質量の半分を含む球の半径は銀河団の光度の半分を含む球の半径と同じであろう、と

仮定して rhを近似的に求める。この仮定に加え、銀河団が球形であると仮定すると、結果

として rhが次のように求められる：

rh ≈ 1.5Mpc ≈ 4.6 × 1022m (25)
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これでようやく銀河団の質量を評価できる。これらの仮定や近似から、最終的にかみの

け座銀河団の質量として次式が得られる：

Mcoma =
< v2 > rh

αG

≈ (2.32 × 1012m2s−2)(4.6 × 1022m)
(0.4)(6.7 × 10−11m3s−2kg−1)

≈ 4 × 1045kg

≈ 2 × 1015M⊙

(26)

ここでM⊙は太陽質量を表わす記号である。ちなみに、かみのけ座銀河団の中に含まれる

星の全質量Mcoma,⋆、ガスの全質量Mcoma,gasは

Mcoma,⋆ ≈ 3 × 1013M⊙

Mcoma,gas ≈ 2 × 1014M⊙
(27)

となる。見ての通り、これらの両方を足してもかみのけ座銀河団の質量の 10％程度にしか

なり得ないという予想外の事実が明らかになった。つまり、銀河団の全質量の約 90％は目

にみえない dark matterが独占しているということになる。また、太陽光度L⊙,Bを使って

表わしたかみのけ座銀河団の光度 Lcoma,B = 8 × 1012L⊙,B を用いると

<
M

LB
>coma≈

250M⊙
L⊙.B

(28)

という関係が得られる。この値は太陽周辺のそれと比べて 2桁も大きい、という驚くべき

結果になっている。これらの事より、銀河団スケールにおける dark matterの存在は明ら

かであると言えよう。

2.4 その他のスケールでの dark matter存在証拠

上で見てきた 2つのスケールの議論だけでは宇宙全体の dark matterの量は分からない。

これは CMBのデータから評価し得るということをここから見ていく。ここで CMBとは

Cosmic Microwave Backgroundの略語であり、宇宙の晴れ上がりによって自由に飛びまわ

れるようになった光子のことである。今日、この CMBの解析により宇宙論パラメーター

には様々な制限が厳しく付けられる。それによる最新データを以下に記しておく：
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表１（Ref[65]より引用）

CMBの観測から、CMB anisotropy mapsと呼ばれる、宇宙の一様性を表わす立体図が

作られる。このCMB anisotropy mapsから様々な情報を取り出す方法は、少なくとも原理

的には、シンプルである。その方法とは、パラメーターの数をいくつか（たいてい 6つか 7

つ）に固定したある宇宙論のモデルを使って考えていくと、N次元尤度表面（N-dimensional

likelihood surface）のピークから最も最適なパラメーターが決定される、というものである。

このような解析方法によりWMAPのデータのみから導出するとbaryon abundance Ωbh
2

とmatter abundance ΩMh2 は以下のように得られる：

Ωbh
2 = 0.024 ± 0.001

ΩMh2 = 0.14 ± 0.02
(29)

ここで hは 100 kms−1Mpc−1 を単位としたハッブル定数を表わすものである。さらに、

ACBARやCBIなどの研究グループのデータも合わせて考慮すると、これらはより詳しく
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決定される：

Ωbh
2 = 0.0224 ± 0.0009

ΩMh2 = 0.135+0.008
−0.009

(30)

ちなみに、この結果が BBNにより予言される値

0.018 < Ωbh
2 < 0.023 (31)

とも一致しているという事実はBig Bang scenarioの完成度の高さを表わす良い例である。

(30)式、(31)式のどちらからも、目に見えない非バリオン的物質が宇宙には大量に存在し

ていることが読み取れる。
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3 dark matter candidate

前のセクションで見たように、様々なスケールで非バリオン的 dark matter の存在証拠

が観測されている。ところが、初めに存在が指摘されてから半世紀以上経った現在でもそ

の正体については謎のままである。このセクションでは、これまでの多数の研究において

どんな dark matter候補が提案されてきたのか、また、それらの候補に対して今現在どの

ような制限がつけられているのかを、Ref[15]の議論に基づき見ていく。特に、現在有力な

候補の１つであり、この論文でも後に研究対象とする超対称性粒子については詳しく調べ

ていくことにする。

また、以下で様々な候補を見ていくにあたって注意点がある。それは、dark matterが１

つの粒子種で構成されているとは限らない、ということである。実際、dark matterの成分

に対するニュートリノからの寄与が 0ではない、という事は既に分かっている。したがっ

て、dark matterが数種類の成分から成っていると考えると、relic densityの上限について

は厳しく守る必要があるが、ある一種類の成分の寄与のみで観測から分かっている density

にまで到達しなくとも良い、ということになる。

3.1 Standard Model neutrinos

ニュートリノはこれまで数多くの研究において dark matterの有力候補として考えられて

きた。相対論的な粒子に対するボルツマン方程式を解くことにより、ニュートリノの total

relic densityは次式のようになることがわかっている：

Ωνh
2 = Σi

mi

93eV
(32)

　　　　　　mi =⇒i世代目のニュートリノのmass

一方、ニュートリノのmassには実験から次のように制限がつけられている：

mν < 2.05eV (33)

また、太陽ニュートリノに関する実験、大気ニュートリノに関する実験がそれぞれ以下の

ような結果を出したことにより 3つのニュートリノの質量差がかなり小さいということも

分かっている：

∆m2 ≈ 7 × 10−5(eV )2

∆m2 ≈ 3 × 10−3(eV )2
(34)

よって、(34)式のmass上限値を 3つのニュートリノ全てに適用することができ、このこと

と (33)式とを合わせて考えると、以下のように relic densityに対しての上限が得られる：

Ωνh
2 ≤ 0.07 (35)
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この結果と図 1とを比較すれば、ニュートリノは dark matterの dominant componentと

しては足りなすぎる、ということは明らかである。また、補足となるが、CMBの解析か

らは relic densityにより厳しく制限が付けられている：

Ωνh
2 ≤ 0.0067 (36)

この結果からニュートリノのmassに制限を付けると、上で見た制限 [(34)式]より、以下

のように厳しく上限が付けられることが分かっている：

mν < 0.23eV (37)

もしニュートリノに新たな相互作用が存在すれば、ここで調べてきたニュートリノのmass

に対する制限はかなり変わりうるが、そのような相互作用は今のところ見つかっていない。

宇宙論的なスケールからもニュートリノと dark matterとの関係に制限が付けられる。

ニュートリノは相対論的な collisionless particleであることから、free-streaming lengthと

呼ばれるスケール（∼ 40Mpc(mν/30eV )）以下の揺らぎを消す、ということが知られてい

る（Ref[22]参照）。もしニュートリノが dark matterの dominant componentであるとす

ると、この現象により宇宙の大規模構造は top-down型構造形成によって作られることにな

る。ところが、我々の銀河が local groupより古く見えるなどの宇宙論的観測により、現在

では、宇宙の大規模構造は bottom-up型構造形成で作られたということが分かっており、

このことからもニュートリノを dark matterの dominant componentと見なすのは難しく

なってきている。

3.2 sterile neutrinos

上で見たように、標準理論のニュートリノで dark matterの正体を解明することは出来

なかった。そこで、sterile neutrinoと呼ばれる粒子を dark matterの候補として仮定した

研究がなされた（Ref[23]参照）。これは標準理論のニュートリノに似てはいるが、弱い相

互作用をせず、非相対論的にもなり得る仮定的粒子である。

reionizationの光学的厚みに対するWMAPの解析結果がもし正しいとすると、z > 20以

前にmassive starsを形成するためには、その時期には dark matterも配置されていなくて

はならないことになる。しかし、これはもしmDM ≤ 10KeV であれば、無理であることが

分かっている。これにより、mass <数 KeV のニュートリノは dark matterの候補から除

外される。ところが、この光学的厚みに対して、sterile neutrinoのような decaying particle

による reionizationであると考える別解釈が出来る、という研究もある [Ref[7]]。また、か

なり小さな lepton asymmetryが存在するならば、sterile neutrinoは cold dark matterに

もなり得る（Ref[24]参照）。この場合 sterile neutrinoは上で述べたmassの制限に反する

ことなく dark matterの候補となることが可能である。
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3.3 axion

素粒子物理におけるCPの破れの問題を解決するために導入された粒子である axionは、

dark matterの候補としても研究対象となっている。実験や stellar cooling、supernovae

1987Aの dynamicsから axionには以下のようにmassの制限がつけられている：

maxion < 0.01eV (38)

また、axionは他の粒子との相互作用が非常に弱いため、宇宙初期において熱平衡状態には

無かったということが分かっている。現在のところ axionについて他に分かっていることは

かなり少ない。production mechanismについてもほとんど分かっていないのだが、axion

の relic densityの計算は production mechanism によっているため、結果として不確かな

relic densityの値しか得られない。しかし、このように確かな情報があまりにも少なく、よ

り詳しい研究が困難であるにも関わらず、現在の制限に反しないパラメーター領域も存在

しており、axionは今日においても dark matter候補の１つとして考えられている（Ref[25]

などを参照）。

3.4 sneutrinos

これは標準理論における neutrinoの superpatnerである。そのmassが 550GeV ≤ m ≤
2300GeV の範囲内にあれば sneutrinoは dark matterの有力候補になる、と長い間考えら

れてきた。しかし、核子を用いた直接検出の実験から sneutrinoは dark matterにはなり得

ない、ということが既に分かっている（Ref[26]参照）。

3.5 gravitinos

gravitinoは重力相互作用の伝達粒子である gravitonの superpatnerであり、gauge medi-

ated SUSYなどいくつかのモデルにおいては、gravitinoは最も軽い超対称性粒子（Lightest

Supersymmetric Particle : LSP）であると考えられている。セクション 3.10で論じていく

ように、LSPは dark matter候補になりえることより、LSP gravitinoも dark matterの候

補としてかなり有力視されているものの１つである。しかし重力相互作用しかしないため

に検出が極めて困難であるという問題がある。また、宇宙論においても長寿命の gravitino

は BBNへの影響を通してなどで、gravitino問題と呼ばれる様々な問題を抱えていること

が知られている（Ref[27、28、29、30、31、32、33、34、35、36]）。さらに、もし再加熱

温度が十分に低くない場合、宇宙初期に gravitinoが overproduceされてしまうかもしれな

い、という問題点もある（Ref[33]）。gravitinoは宇宙論的に問題が多いため dark matter

候補として不適切であるかのように見えるが、これらの問題に対してはいくつかうまい解

決策が存在しえる、そのため現在でも有力候補の１つとなっている。
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3.6 axinos

これは axionの superpatnerであり、最近まで hot dark matter、warm dark matter両

方の候補として研究されてきた（Ref[37、38]）。また、再加熱温度がかなり低い場合には、

axinoは cold dark matterにもなり得るという研究もある [Ref[8、9、10、11]]。すなわち

この粒子には様々な可能性が秘められているといえる。補足となるが、多くの面において

axinoは gravitinoと現象論的に類似の性質を持っていると考えられている。

3.7 light scalar dark matter

フェルミオンの dark matter候補を考えると、そのmassは Lee-Weinberg boundにより

以下のように制限される (Ref[17])：

mfermion ≥ few(GeV ) (39)

この制限はフェルミオンにのみ適用可能なものであり、その他の場合（例えば、スカラー

粒子など）には無効となることからmassが 1 ∼ 100MeVのスカラー粒子候補などの研究

もなされている（Ref[39、40]）。この”その他の場合”に相当する候補が、最近、実験的な

方面から注目されている。どういうことかというと、例えばRef[1]の研究で次のような主

張がなされている：

『galactic bulgeから観測される 511KeVの γ-ray line emissionは、dark matterの

annihilationから生じた e+の annihilationによって生成されたものかもしれない』

この仮説を確かなものにするため、今後さらなる観測確認が必要とされている。

また、最近には、この 511KeVの γ-ray line emissionの観測を基にして、sterile neutri-

nos(Ref[42])やR-parityの破れをもつ axino(Ref[41])などが light decaying dark matterと

して研究され始めている。この 511KeV emissionは今後注目すべき対象であるかもしれ

ない。

3.8 dark matter from little Higgs models

weak scaleを安定化させる機構としては、SUSYが最も知られているが、それにかわる

機構として”little Higgs models”というものが存在し、研究されている（Ref[43、44、45、

46]）。このモデルにおいては、標準理論の Higgsは pseudo-Goldstone bosonであり、そ

の massは近似的な非線形大局的対称性によりまもられている。このモデルでは、Higgs

massに対する発散は 2-ループレベルにのみ存在し、それにより、10TeVほどまでであれ

ば effective field theoryは安定化され得る。

このような little Higgsの機構において、少なくとも２つのモデルが dark matter候補と

なり得る粒子を含んでいる。その中の１つは”theory space”little Higgs modelsと呼ばれ

るものであり、観測に矛盾しない dark matter relic density を与え得る安定なスカラー粒
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子を含んでいる。このモデルの dark matter候補粒子に関してRef[12]の研究は次のような

主張をしている：

『この候補粒子の検出可能性は、SUSYまたは universal extra dimensionにおいて

存在するWIMPsの検出可能性と同様のものになるようである』

もう 1つのモデルは Chengと Lowにより考え出されたもので、もともとは電弱スケー

ルと電弱精密測定により制限される新粒子のmassとの間の階層性を解決するためのモデ

ルである (Ref[16])。その具体的な解決策は、TeVスケールにおける新たな対称性を導入す

る、というものであった。この新たな対称性の導入による結果として、数TeVのmassを

持つ安定なWIMPが理論の中に現れることになり、これが dark matter の候補になり得る

のである。

これらの little Higgs modelから出てくる dark matter候補粒子を安定化させるために

は、この粒子の decayを防ぐ離散的対称性が必要となる。この対称性は fundamentalなも

のであり、UV completionにおける演算子により破られることはない、という仮定をつけ

なくてはならない。

3.9 Kaluza-Klein states

我々の世界は 4次元だが高エネルギースケールでは別の次元が出現する可能性がある。

このような概念をもとにして 1921年にKaluzaは電磁力と重力とを統一し得る理論、すな

わち余剰次元理論を提唱した。この余剰次元理論では次の用語が用いられる：

　 brane　=⇒通常の (3 + 1)次元の時空

　 bulk　=⇒braneが埋め込まれている (3 + δ + 1)次元の時空

この余剰次元理論の一般的特徴として以下のようなものがある：

『余次元のコンパクト化により bulkにおける全ての場の propagatingは p2 ∼ 1/R2

を単位として量子化される運動量をもつ』

ただし Rは余次元がコンパクト化されている空間のサイズを表わす。この量子化の結果

として、各 bulkの場に対し Kaluza-Klein(KK) statesと呼ばれる、フーリエ展開で表わ

される様々なモードのセットが現れる。この KK-states も dark matter 候補となり得る

ものの１つである（Ref[47]）。具体的に候補として考えられているのは、フォトンの first

KK excitation、より正確にはフォトンの hyperchargeを持ったゲージボソンの first KK

excitationである。Servantと Taitによるフォトンの first KK excitation relic densityの

計算結果を基にして考えると、dark matterとして観測に矛盾しないようにするためには、

この粒子のmassは以下のように制限される [Ref[13]]：

400GeV ≤ m ≤ 1200GeV (40)
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このように重いmassをもつKK particleの直接検出のためには非常に大きな検出器が必要

であり、次代の実験（GENIUSやXENON）を待たなくてはならないようだ。また、2007

年稼動予定の LHCでも TeVスケールまでの余剰次元理論については調べることが出来る

はずであり、その成果に余剰次元理論解明、また KK-states dark matter検出の期待がか

かる。

3.10 neutralinos

neutralinosは、4つの粒子

• bino　=⇒標準理論における力の媒介粒子である B-bosonの superpatner

• wino　=⇒標準理論における力の媒介粒子であるW 3-bosonの superpatner

• Higgsino 1=⇒標準理論において質量の起源となるHiggs bosonの superpatner

• Higgsino 2=⇒標準理論において質量の起源となるHiggs bosonの superpatner

の線形結合で構成されるもので、以下のように表わされる：

χ = N11B̃ + N12W̃3 + N13H̃
0
1 + N14H̃

0
2 (41)

この表式のように、質量の固有状態 (B̃, W̃3, H̃
0
1 , H̃0

2 )で neutralinosを表わした場合、N11

などを決定する neutralino mass matrixは次のように書くことが出来る：
M1 0 −MZcosβsinθW MZsinβsinθW

0 M2 MZcosβcosθW −MZsinβcosθW

−MZcosβsinθW MZcosβcosθW 0 −µ

MZsinβsinθW −MZsinβcosθW −µ 0

 (42)

　　　　　　M1 =⇒ bino mass parameter

　　　　　　M2 =⇒ wino mass parameter

　　　　　 tanβ =⇒ Higgs bosonの真空期待値の比

　　　　　　　 µ =⇒ higgsino mass parameter

最小限に標準理論を拡張した超対称性理論（Minimal Supersymmetric Standard Model:MSSM）

のいくつかのモデルにおいては neutralinosが LSPであると考えられており、それに関連

し dark matterの有力候補としても考えられている。この論文においても後のほうで neu-

tralinosを dark matterとして扱い研究していくので、このサブセクションにおいて詳しく

調べていくことにする。
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neutralinosが dark matterの最も有力な候補の１つであると考えられるにはいくつかの

理由がある、まずはそれについてを見ていく。MSSMを作り上げていく際に、proton decay

を禁止するためR-parityという次式で表わされる離散的対称性の保存を要請する：

R = (−1)2S+3(B−L) (43)

ここで S、B、Lはそれぞれある粒子のスピン、バリオン数、レプトン数を表わす。この式

に従い計算すると標準理論の粒子には R = +1、超対称性理論の粒子には R = -1となる。

R-parityの保存とは、ある反応において始状態粒子の各Rの積の値は終状態粒子の各Rの

積の値と同じになる、というものである。すなわち、これを考慮すると、LSPは他の粒子

に decayすることが出来ず、宇宙論的なスケールの時間で安定な粒子となる。これこそが

neutralinosが dark matterの候補と考えられる最も大きな理由である。

また、観測により dark matterは非バリオン的な中性物質であることが分かっている

が、neutralinosはこの条件も満たしている。さらに、セクション 3.1で述べたように、構

造形成の議論から dark matterは非相対論的な粒子でなければならない、これについても

neutralinosのmassは実験から十分に重いことが分かっているので、条件をしっかり満た

している。これらの理由などから neutralinosが有力候補として考えられるのである。

neutralinoが dark matterであるとした場合に観測と矛盾しないようにするためには、

そのmassの可能な範囲がおよそ 200GeV ∼ 2000GeV となることが様々な研究により分

かっている。これは近い将来加速器において到達しえるエネルギーレベルであるので、dark

matterの研究と加速器の物理が密接に関わってくるであろう事が予想される。（セクショ

ン 5参照）

3.11 その他の dark matter候補

ここまで見てきたいくつかの dark matter候補の他にも多数の候補が研究されてきた。

ここでは詳しく取り上げないが、以下にその候補名のみを記しておく：

• Q-balls （Ref[48、49]）

• mirror particles （Ref[50、51、52、53、54]）

• charged massive particles(CHAMPs)(Ref[55])

• self interacting dark matter(Ref[56、57])

• D-matter(Ref[58])

• cryptons(Ref[59、60])

• superweakly interacting dark matter(Ref[61])

• heavy fourth generation neutrinos(Ref[62])

• brane world dark matter(Ref[63、64])
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4 relic abundance calculation

4.1 このセクションで見ていく内容

dark matterの研究において、relic abundanceの計算は数多くなされてきた。代表例と

しては、Lee-Weinberg calculation(Ref[17])などがあげられる。ここでは、スタンダード

な方法では正確な結果が出せず、修正された扱いが必要となるような 3つのケースについ

てを、Ref[18]の議論に基づいて考えていく。

一つ目のケースは、relic particleがある理論の枠組みにおける粒子の中で最も軽く、そ

のmassとほとんど同じくらいだがわずかにより重いmassを持った粒子が存在する場合で

ある。このケースにおいては、最も軽い粒子の relic abundanceはそれ自身の annihilation

cross sectionだけでなく、この粒子と extra particlesとの annihilationも含めて考慮して

決定される。この extra particlesとの annihilationを coannihilationと呼ぶことにする。

二つ目のケースにおいては、relic particleより重い粒子へのannihilationを含めて考える。

この annihilationを”forbidden” channel annihilationと呼ぶことにする。これまでの研究

ではこれは運動学的に無理であると見なされてきた。しかし、もしheavier particleが 5∼10

％だけ重いものであれば、これらの channelが annihilation cross sectionにおいて支配的

となり、relic abundanceを決定するうえで重要となる場合がある。ちなみに、annihilating

particleが final-state particleより軽い場合に考えられる final-stateとしては次のようなも

のが一例として考えられる：tt̄,W+W−,Higgs bosons,などなど。

三つ目のケースは、annihilationがプロパゲーターのポール付近領域で起こる場合であ

る。これは、例えば、relic particle mass≃ mZ/2の場合に、Z boson propagetorを通して

反応が起こる時にこの propagetor内からポールが出ることにより起こりうる。このケース

においても通常の場合に比べ大きくクロスセクションがかわり、relic abundanceにもかな

りの影響が出ることになる。

3つのケース全てに対して、より正確な取り扱いを可能とする simple formulaを導出し

ていく。

4.2 standard calculation of relic abundance

ここでは、Lee-Weinberg scenarioにおける粒子種 χの relic abundance計算の standard

techniqueについてを見ていく。計算をしていくうえで以下の２つの点に注意する：

• 10∼20％の補正は大して気にせずに進めていく

• 最近の improvementsはあまり深く考慮しない

relic abundanceは χの個数密度 nに対する次式のボルツマン方程式を解くことによって得

られる（導出については appendixを参照せよ）：

dn

dt
= −3Hn− < σv > [n2 − (neq)2] (44)
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　　　H : ハッブルパラメーター

　　　 neq : 平衡状態における χの個数密度

　　　 v : 相対速度

　　　< σv > : χ + χ → (all)に対するクロスセクションの熱平均

neq としては以下の非相対論的近似式を使う：

neq ≈ g(mT/2π)
3
2 exp(−m/T ) (45)

　　　　　　　 g : χの自由度（スピン、カラー、など）

　　　　　　　 T : 温度

　　　　　　　m : χのmass

非相対論的な dark matter（Cold dark matter:CDM）として振舞う粒子に対しては以下の

ことが分かっている：

• freeze-out temperature T ∼ m/25

• 非相対論的 equilibrium abundance

多くの場合、熱平均化前のクロスセクションは v2でテイラー展開されたものであらわさ

れる（ただし、反応時の相対速度はそれほど大きくないと仮定して v2の高次の項は落とし

て考える）：

σv = a + bv2 (46)

このクロスセクションの熱平均をとると次式のようになる：

< σv >= a + 6bT/m (47)

(45)式は数値的に解くことが可能であるが、以下では近似的に解析的な解を求めていく。

まず用語の説明をしておく。ある粒子の反応率が宇宙の膨張率に比べ大きい場合、その粒子

は熱平衡の状態にあることになる。しかし、宇宙膨張による個数密度低下によってこの粒

子の反応率が宇宙の膨張率以下になり、この粒子は熱平衡状態でいられなくなる。ある粒

子が熱平衡状態から外れるこの瞬間の事を freeze-outという。また、freeze-out後に非相対

論的に振舞う粒子種を cold relics、相対論的に振舞う粒子種を hot relicsと呼ぶ。freeze-out

前の段階では n ≃ neq であるが、温度が下がっていき freeze-outの状態になると neq は指

数関数的に落ちていき neq = 0となる。つまり、freeze-out時以降であれば (45)式の neq

は落として考えることができ、(45)式は積分可能になる。このようにして、2つの時期そ

れぞれにおける近似解を出し、それらを freeze-out pointで一致させるようにすることで、

(45)式の解を近似的にではあるが解析的に求めることができる。
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以下では、Ref[2]を参考にして、cold relicsに限定して考えていく。freeze-out pointは

次式であらわされる：

xf = ln[
0.038gmplm < σv >

g
1/2
∗ x

1/2
f

] (48)

　　　　　　　 x = m/T

　　　　　　　mpl = 1.22 × 1019GeV

　　　　　　　 g∗ : freeze-out時の相対論的自由度

（(49)式の導出については appendixを参照せよ。）(49)式を解く方法としては一般的には

逐次近似法が用いられる。

freeze-out時では n ≃ neq であるが、freeze-out後では relic particlesの annihilationに

より relic abundance は減少していく。この annihilationの効果は以下の積分 Jを通して

relic density計算の中に現れる：

J(xf ) =
∫ ∞

xf

< σv >

x2
dx (49)

この J(xf )を使うと、χ particleの今日のmass densityは以下のようにあらわされる：

Ωh2 ≈ 1.09 × 109GeV −1

Jg
1/2
∗ mpl

(50)

　　　　　 Ω = (今日のmass density)/(critical density)

　　　　　 h : 100 kms−1Mpc−1を単位としたハッブル定数

また、< σv >を展開形で表した場合、χ particleの今日の relic densityは近似的に次のよ

うに書ける：

Ωh2 =
1.09 × 109xf

g
1/2
∗ mpl(GeV )(a + 3b/xf )

(51)

ここまで見てきた計算にはいくつか弱点が存在している、以下にそれらを列挙していく：

弱点 1

equilibrium abundanceの計算においての非相対論的近似の仮定

弱点 2

熱平均化クロスセクションの計算においても非相対論的アプローチを仮定

=⇒ref[3]で指摘されているように、これは 10％ほどのエラーを導くことにな

るかもしれない

弱点 3
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g∗は annihilationが効かなくなるまで一定のまま、という仮定

=⇒この近似は quark-hadron transitionが起こっているときに freeze-outが起

こっていると最も精度が悪くなる。しかし、実際には、この場合でさえ大した

エラーにはならない

しかしながら、ここで述べてきたことそれほど重要な問題にはならないので、この論文に

おいてはこれらの小さな omissionsは無視していくことにする。むしろ我々の議論におい

てより問題となる重要な点は、

『xf の決定、または、ボルツマン方程式が近似的に解ける 2つの時期の matching

pointの決定』

である。xf は early timesで n ≈ neq を仮定することによって導くことができる。このと

き、δ = n − neq については解析的に解くことが可能である（Ref[2]参照）。また、この δ

を用いると freeze-out pointは、δ = cneq(cはオーダー 1の定数)となるとき、という定義

で与えられる。これらについて考えていく際に、ベキの形で温度依存が入っている熱平均

化クロスセクション< σv >∼ Tnに対する cの便利なとり方は以下のとり方である：

c(c + 1) = n + 1 (52)

ちなみに、(49)式で使った値は n = 0、c =
√

2 − 1である。この論文で考えるケースに対

しては、クロスセクションはシンプルなベキ則ではなく、もっと複雑な温度依存性をもっ

ているかもしれない。したがって、xf とmatching pointの決定についてもより複雑化す

るため、可能な限り正確なものに考え直す必要がある。

xf の小さなエラーはせいぜい annihilation integral Jに小さな違いをもたらす程度であ

る。しかし、我々が考えていくケースではこれが実際に起こりうるので、気にとめておく。

これらの事を気にとめておきつつ、この論文で考えていく際には c =
√

2− 1を使って考え

ていく。この cのとり方で大きなエラーが出ることはない、という事を示すために、後の

方でボルツマン方程式を数値的に解いた結果と比較することにする。

ここまでで見てきた relic abundance計算の流れをまとめておく：

(a) (45)式のように方程式を立てる

(b) (49)式と適切な< σv >を使って xf を求める

(c) annihilation integral Jを評価し、その結果を (51)式に代入する

このとき重要なポイントとなるのは、ステップ (b)、(c)において適切な< σv >を使うこ

とである。
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4.3 relic abundance from coannihilation

ここでは relic particle(χ1)よりわずかに重いmassの粒子 (extra particle)が存在する、

というケースに注目して考えていく。もしmass difference δm = m − m1が Tf (⇒ χ1の

annihilationが freeze-outするときの温度)に比べて大きければ、この extra particleの存

在はほとんど無意味になる。しかし、もし δm ∼= Tf であれば、この extra particleが relic

particleと同じくらい熱浴から生成されることになる。Tf とm1の関係が

Tf ≈ m1/25 (53)

となるようなケースが我々が注目すべきものである。このような場合に、もしmass degener-

acyが 5～10％くらいであれば、extra particleがからんだ annihilationが relic abundance

に大きく影響しえる。

ここから、初期宇宙における、粒子 χi(i = 1, 2, ..., N)の時間発展について考える。この

χiは standard modelには存在しない、なにか特別の対称性を持った粒子である。具体例

としては以下のようなものが考えられる：

• R-parityを課した SUSY particle

• それ自身のある対称性を課した pseudo-Higgs particles(Ref(4)参照)

これらの粒子に、i < jならばmi < mj となるように labelづけする：

　　　　　　 χ1(mass : m1) =⇒ lightest

　　　　　　 χ2(mass : m2) =⇒ second lightest

ここで1つ注意点がある。それは我々が興味があるのは、とにかく何か安定な lightest particle

が dark matter候補となる場合であり、決してこの候補のために特別に保存される対称性

を仮定するわけではない、という点である。

χiの個数密度を変え、それらの abundance決定に関わってくる反応は以下のようなもの

が考えられる：

χiχj ←→ XX
′

(54)

χiX ←→ χjX
′

(55)

χj ←→ χiXX
′

(56)

ここでX 、X
′
は standard modelの粒子である。また、仮定されている対称性により以下

のような反応は禁止されている：

χiχj ←→ χkX

χiX ←→ XX
(57)
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もし (57)式の反応が reasonable rateで起こるのであれば、全ての χi(i > 1)は今日までに

χ1へと decayしたと考えるのが自然である。(55∼57)式の反応全てを考慮したボルツマン

方程式は次式で表わされる：

dni

dt
= − 3Hni − Σj,X [< σijv > (ninj − neq

i neq
j )−

(< σ
′
ijv > ninX− < σ

′
jiv > njnX

′ ) − Γij(ni − neq
i )]

(58)

このボルツマン方程式の右辺の各項が表わしている内容：

第 1項

　=⇒ 宇宙膨張による個数密度の希薄化

第 2項

　=⇒ (55)式の反応 (both forward and backward)の効果

第 3項

　=⇒ (56)式の反応 (both forward and backward)の効果

第 4項

　=⇒ decayと inverse decayの効果

これで lightest particleの個数密度について解析していく用意が出来たわけではない。な

ぜなら、annihilationで消え尽くさなかった χi(i > 1)も最終的には χ1に decayするので、

niに関係してくるのは単純に niだけではなく、χiの total density n = Σiniとなる。した

がって、ボルツマン方程式も全粒子種を含めて以下のように書き直さなくてはならない：

dn

dt
= −3Hn − Σi,j [< σijv > (ninj − neq

i neq
j )] (59)

このボルツマン方程式をどのようにして導出したのかを見ていく。簡単化のためにN = 2

の場合で考える。まず、左辺と右辺第一項、第二項は単純に (59)式の左辺と右辺第一項、

第二項において iについての和をとるだけである。(59)式の右辺の残りの項についても同

様にすれば良いのであるが、ここで注意が必要となる。注意点そのものは残りの項全てに

共通であるので、一番最後の項についてだけ具体的に示していく。一番最後の項において

iについて和をとると

Σi,jΓij(ni − neq
i ) = Σj(Γ1j + Γ2j)(n1 + n2 − neq

1 − neq
2 )

= (Γ12 + Γ21)(n1 + n2 − neq
1 − neq

2 )
(60)

となる。ここで、Γ12と Γ21は decayと inverse decayによりキャンセルして 0と見なすこ

とが可能なので、結局 Γ12 + Γ21 = 0となり、この一番最後の項の寄与は実質無くなってし

まうことになる。他の残っていた二項についても同様にして考えると、その寄与は 0にな

る。これで (60)式の導出は完成となる。しかし (60)式に関していくつか注意点が残って

いる：
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• χ particleは自分自身と annihilateしうる、cosmic asymmetryを持たないスカラー

またはマヨラナフェルミオンであると暗に仮定を付けてあった

=⇒しかしディラックフェルミオンの場合の方程式も同様の手順で簡単に導出可能で
ある

• (55)式の反応において i = jの場合は (60)式にファクター 2を付けなくてはならない

のでは？

　　　　　　　　　　　　　　 ⇓

同種粒子が入ってくることを考慮すると、熱平均化においてファクター 1
2 がつくの

で、2 · 1
2 = 1となり結局式の形は変わらない

• (60)式の和は i、j両方でとり、σij は symmetricであることから、σ12のような項の

前にはファクター 2がつく

ここから先ではいよいよ、freeze-outに関連する温度あたりでの、(55)式の反応と (56)

式、(57)式の反応との反応率の大きな違いについて調べていき、それによりもたらされる

効果についてを見ていく。(55)式、(57)式のタイプの反応率はそれぞれ概算で以下のよう

になる：

ninjσij ∼ T 3m
3
2
i m

3
2
j σijexp[−(mi + mj)/T ]

ninXσ
′
ij ∼ T

9
2 m

3
2
i σ

′
ijexp[−mi/T ]

(61)

ここで、

• dark matter候補の粒子は Tf ∼ m/25で freeze-out

• σij ≃ σ
′
ij

という２つの仮定を用いると、これら 2タイプの反応率の違いは大雑把に次式のように評

価することができる：

ninXσ
′
ij/ninjσij ∼ nX/nj

∼ (T/mj)
3
2 exp[mi/T ]

∼= (1/25)
3
2 exp[25]

∼= 109

(62)

relic particleの freeze-outを決定するのは (55)式のタイプの反応であるが、今見てきたよ

うにこのタイプの反応は他のタイプに比べて非常に弱い。よって、以下の近似関係式が成

り立つことになる：

ni/n ≈ neq
i /neq (63)
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すなわちこの関係式は、total χ densityと χi densityの比は freeze-out前、最中、後それ

ぞれで同じくらいになる、ということを意味している。ここで、後の便利化のために次の

量を定義する：

ri ≡ neq
i /neq

=
gi(1 + ∆i)

3
2 exp[−x∆i]

geff

(64)

∆i = (mi − m1)/m1

geff = Σigi(1 + ∆i)
3
2 exp[−x∆i]

(65)

これらの定義と ni/n ≈ neq
i /neq を用いると、ボルツマン方程式 (60)式は次のように書き

直すことが出来る：

dn

dt
= −3Hn− < σeffv > (n2 − n2

eq) (66)

σeff = Σijσijrirj

= Σijσij
gigj

g2
eff

(1 + ∆i)
3
2 (1 + ∆j)

3
2 exp[−x(∆i + ∆j)]

(67)

この書き直されたボルツマン方程式はスタンダードな方程式の形、すなわち前のサブセク

ションで論じた帰着させるべき方程式の形になっている。したがって、前のサブセクショ

ンと同様の手順、すなわち、xf を求め、適切な annihilation integralを実行することによ

り relic abundanceを求めることが可能である。

σeff を用いて freeze-out temperatureを書き直すと

xf = ln[
0.038geffmplm1 < σeffv >

g
1/2
∗ x

1/2
f

] (68)

と表わされる。この式における σeff を前の方でもやったようにテイラー展開する：

σeff = aeff + beffv2

= aeff + 6beffx−1
(69)

これを用いた annihilation integral Jは次式で表わされる：

J =
∫ ∞

xf

σeff

x2
dx

=
∫ ∞

xf

x−2aeffdx +
∫ ∞

xf

6x−3beffdx

= (a11Ia + 3b11Ib/xf )/xf

(70)

Ia =
xf

a11

∫ ∞

xf

x−2aeffdx

Ib =
2x2

f

b11

∫ ∞

xf

x−3beffdx

(71)
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この式に現れた aeff、beff は (68)式において σij のところを aij、bij と置き換えれば求め

ることが可能である。ここまで来れば、上の新たな Jを用いて書き表した relic abundance、

すなわち、extra particleの存在を考慮して計算した relic abundanceを導出することがで

きる：

Ωh2 =
1.07 × 109xf

g
1/2
∗ mpl(GeV )(a11Ia + 3b11Ib/xf )

(72)

ここで注意すべきことがある；この新たに求められた relic abundanceは xf に当然新しい

xf を用いて計算しなくてはならない。これでようやく extra particle有りの場合と無しの

場合を比較評価するための準備完了となる。実際に比較評価をしていく際には以下のRを

用いて考えていく：

R ≡ Ωold/Ωnew

≈ Jnew(xf,new)/Jold(xf,old)
(73)

具体例として、まずは次のような極限で考える：

• σij が全て同じ値

• Iaと Ibはどちらも 1

このような極限の場合、relic abundanceを変えうるのは xf、すなわち freeze-out tempera-

tureのみとなる。また、σijが全て同じ値、ということより、extra particleχiはχ1particles

の extra degrees of freedomとして振舞う。よって、massと自由度が共に縮退していれば、

geff = Ng1となる。この極限の仮定に加え、さらに s-wave annihilationのみで考えると、

最終的にRは以下のようになる：

R ≈ 1 − x−1
f ln[N ] ≈ 1 − 0.04ln[N ] (74)

この結果に、具体的にN = 2などの典型的な値を入れてみると、5％以下の影響しかもた

らし得ないということが分かる。つまり、ここでの解析で分かったことは、extra particle

のmassが dark matter候補と同じくらいのmassであっても、クロスセクションが同じく

らいである限り、extra particleの影響はほとんど出ない、という結果である。

次の具体例として、SUSYを考慮に入れたモデルを考えてみる。注目すべき粒子を次の

ように設定する：

　　　 LSP(χ1) =⇒ neutralino

　　　NLSP(χ2) =⇒ squarks

NLSPとは LSPの次に重いmassをもつ粒子Next Lightest Supersymmetric Particleの事

である。また、これらの粒子のmassは縮退しているとする：mLSP
∼= mNLSP。このケー

スであれば、前のケースのように σij が全て同じ値、という事にはならないであろう。実
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際、適切なファインマンダイアグラムを用いて大雑把に評価することにより、それぞれの

反応のクロスセクションの比は以下のようになるであろうと予測がたつ：

σ22(q̃ ¯̃q → gg) ∼= (αs/α)σ12(χ̃q̃ → gg)

∼= (αs/α)2σ11(χ̃χ̃ → qq̄)
(75)

　　　　　　 g =⇒グルーオン

　　　　　　 q =⇒クォーク

　　　　　　 αs =⇒strong-interaction coupling

　　　　　　 α =⇒electroweak coupling

さらなる具体化と便利化のために、以下では、温度によらない（⇒ a term only）クロス

セクション σ22 = Aσ12 = A2σ11（αs/α ≈ 20なので、A ≈ 20とする）をもつ 2粒子系を

考える。前に求めた effective cross sectionを用いて、この系の effective cross sectionを計

算すると以下のように求められる：

σeff = σ11[
1 + Aω

1 + ω
]2 (76)

ω = (1 + ∆)
3
2 exp(−x∆)g2/g1

∆ = (m2 − m1)/m1

x = m1/T

(77)

また、effective number of degrees of freedomを具体的に計算していくと、今考えている

ケースの場合、シンプルな形に帰着する：

geff = Σigi(1 + ∆i)
3
2 exp(−x∆i)

= g1 + g2(1 + ∆)
3
2 exp(−x∆)

= g1(1 + ω)

(78)

これらの式を利用して、まずは、degenerate limit、すなわち∆ = 0の場合について考

えてみる。この limitにおいては、A ≈ 20であることから、effective cross sectionは次式

のように求められる：

σeff (deg) = σ11[
(1 + Ag2/g1)2

(1 + g2/g1)2
]

≈ σ11[
A2g2

2/g2
1

(1 + g2/g1)2
]

= σ11[
A2

(1 + g1/g2)2
]

(79)

また、ここでも s-wave annihilationが主な反応モードであると考えると、今得られた ef-

fective cross sectionよりR(deg) は次のように近似形で表わすことができる：

R(deg) ≈ Ia ≈ A2/(1 + g1/g2)2 (80)
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この結果を具体的な状況ごとに当てはめてみる。はじめに最もシンプルな状況、すなわち、

LSPと縮退した massを持つ squarkが一つだけ存在している場合を調べてみる。このと

き、squarkがカラーの自由度 3を持つということに注意して考えると、g2/g1 = 3となり、

R(deg)は以下のように求められることになる：

R(deg) ≈ A2/(1 + g1/g2)2

≈ 400/(1 + 1/3)2 ≈ 200
(81)

また、今見た状況をより複雑化させた場合、すなわち、6つの squarkの left chiral state、

right chiral stateの全てのmassが LSP massと縮退していればどうなるか調べてみる。こ

の場合では、g2/g1 = 18になり、R(deg)は

R(deg) ≈ A2/(1 + g1/g2)2

≈ 400/(1 + 1/18)2 ≈ 380
(82)

となる。ここで見てきた 2つの具体的状況のどちらにおいても、extra particleが大きく影

響することはR(deg)の値から明らかである。

ここまではLSPとNLSPのmassが完全に縮退している場合について調べてきた。では、

完全には縮退していない場合 (∆ ≠ 0)にはどうなるであろうか？このような場合について

調べるためには、(72)式の積分に戻って考え直さなくてはならない。以下では、様々なA、

xf,old、g2に対しての数値積分の結果をグラフ化し、それを用いて extra particleの影響な

どを考察していく。

まず、A = 20、g2/g1 = 3、すなわち squarkの１つのフレーバー、１つの chiral state

のmassだけが LSP massと同じくらいであるような状況を考える。図の縦軸にあるΩold、

Ωnewはそれぞれ standard caluculation、coannihilationを考慮した caluculationによって

求められた relic densityを表わしているものである。また図において『+』印は xf,old = 25

に対応したクロスセクションに対するボルツマン方程式を数値的に解いたものを、曲線は

前のサブセクションで見てきたmatching techniqueを用いて解いたものを表わしている。

見れば明らかなように、matching techniqueの結果と数値的に解いた結果は高精度で一致

している。したがって、前のサブセクションで残されていた不確かな部分は取り除かれたこ

とになる。すなわち、matching pointを freeze-outの時点に決めて解析を行ったことに問

題は無かった、という結論が得られた。ここで注意すべきことがある。それは実際の xf,old

の値は neutralinoの構成とそのmassの詳細によっているものであるが、ここではそれら

については深くは考慮せずに大まかな振る舞いを見ている、ということである。

次に、xf,old = 25、g2/g1 = 3に固定してAを様々な値に変化させた場合、また、A = 20、

xf,old = 25を固定して g2/g1、すなわち最も軽い粒子のmassと同じくらいのmassを持つ

種の数を変化させた場合の二つのケースを同時に調べていく。それぞれの場合をmatching

techniqueで解いた結果を図 4、図 5に示す。 これらの図から、共通して、最も軽い粒子

のmassとそれに次ぐ軽さの粒子のmassが近づくことが coannihilationに対していかに重

要な影響をもたらすかが読み取れる。他のパラメーターがどんな値であれ、∆ < 0.1を満

たす限り、すなわち、注目している粒子の質量差が最も軽い粒子のmassの 10％以下でさ
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図 3: standard caluculationの結果と coannihilationを考慮した caluculationの結果の比

較（Ref[18]より引用）

えあれば、extra particleの存在は coannihilationに対し必ず大きく影響をもたらすことに

なる。質量差がこれほどまでにきつくなくとも、Aが 20以上、または最も軽い粒子と同じ

くらいのmassを持つ種の数を増やせば、coannihilationに対し大きな影響がもたらされ得

る、という点も重要である。

4.4 annihilation into forbidden channels

『annihilationで消える dark matterのmassの和』が『annihilationで生成される粒子

のmassの和』よりわずかに軽い場合、クロスセクションが通常より大きくなる、ここでは

そのようなケースについて考えていく。このようなケースの具体例として、LSP χ（mass

m1）と２つのHiggs boson（mass mH2、mH3）による反応 χχ → H2H3を考えてみる。も

し、2m1 ≤ mH2 +mH3であるときにこの反応が出来るのであれば、この反応のクロスセク

ションは他の反応のものより 500倍もの大きさになる。その結果、この反応が annihilation

において支配的となり、relic abundance決定に大きく関わってくることになる。標準的

な扱いにおいては、この channelは相対速度が 0の場合禁じられることから考慮されるこ

とはない。しかし、freeze-outは Tf ≈ m1/25のときに起こり、このくらいの温度であれ

ば粒子 χ はボルツマン分布状態にあるので相対速度 0とはならず、heavier particleへの
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図 4: standard caluculationの結果と coannihilationを考慮した caluculationの結果の比較

(xf,old = 25、g2/g1 = 3に固定してAを様々な値に変化させた場合)（Ref[18]より引用）

図 5: standard caluculationの結果と coannihilationを考慮した caluculationの結果の比

較 (A = 20、xf,old = 25を固定して g2/g1、すなわち最も軽い粒子のmassと同じくらいの

massを持つ種の数を変化させた場合)（Ref[18]より引用）
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annihilationも起こるはずである。そして、もしこの annihilation productsのmassがm1

に比べて大きすぎなければ、この種の annihilationがクロスセクションにおいて支配的に

なる。

具体的に forbidden caseについて考えていく前に、allowed channelへの annihilationに

ついて先に調べていく。その際以下の設定のもとで考えていく：

• relic particle =⇒ χ1 (mass m1)

• 簡単化のため、終状態粒子は両方ともmass m2を持つとする

前と同様に、クロスセクションはテイラー展開した形で用いる：

σv = a + bv2 (83)

終状態粒子のmassが小さく、それらが相対論的に動く場合にはこの展開で問題ない。とこ

ろが、kinematics threshold付近ではこの展開形では最も適した形とは言えない。このよ

うな場合は以下のような形の展開式を用いてクロスセクションを扱うべきである：

σv = (a
′
+ b

′
v2)v2 (84)

ここで v2は重心系における終状態粒子の速度をあらわしている。この v2のファクターは

終状態の位相空間積分から出てくるものであり、常に σvの中に入ってくるファクターであ

る。このファクターこそが threshold付近で σvが増大化する原因となるものである。

解析に便利なようにするために、nass ratio z = m2/m1を定義し、v2を以下のように書

き直す：

v2 = (1 − z2 + z2v2/4)
1
2

= z(v2/4 + µ2
+)

1
2

(85)

　　　　　　　 µ+ = (1 − z2)
1
2 /z : v2の最小値

　　　　　　　 v = 2P1/E1 : 重心系における χ1同士の相対速度

relic particle同士の相対速度が小さいケースにおいては、v2 を展開形で表わすことがで

きる：

v2 = (1 − z2 + z2v2/4)
1
2

= (1 − z2)
1
2 (1 +

z2v2

4(1 − z2)
)

1
2

∼= (1 − z2)
1
2 (1 +

z2v2

8(1 − z2)
)

(86)

ところが、この展開式は thresholdのごく近く、すなわち z → 1とした場合には不十分なも

のになってしまう。なぜなら、展開時に”小さい”として扱った部分が無限大になってしま

うからである。したがって、threshold近傍でクロスセクションや relic abundanceを計算す
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る際には、v2のファクターを近似なしでそのままにしておくことが重要となる。threshold

の上（⇒ z < 1 or ”allowed”）での熱平均化クロスセクションは、ボルツマン分布にした

がって平均化することにより次のように求められる：

< σv >all =< (a
′
+ b

′
v2)v2 >

=
x3/2

2π1/2

∫ ∞

0
dvv2exp[−v2x/4]v2(a

′
+ b

′
v2)

=
2z

π1/2

∫ ∞

0
(t/x + µ2

+)
1
2 t

1
2 (a

′
+ 4b

′
t/x)e−tdt

(87)

ここで最後の式変形においては変数変換 t = v2x/4を用いた。

m1が thresholdより下 (⇒ z > 1 or forbidden)の場合にも同様の式が求められる。ただ

し、その際注意点がある。このようなケースにおいては、v = 0では反応が起こりえない

ので、クロスセクションを熱平均化する際の積分範囲は vc ∼ ∞に取り直さなくてはなら
ない、という点である。ここで、

vc = 2µ− = 2(1 − m2
1/m2

2)
1
2 (88)

は臨界速度と呼ばれるもので、反応が起こりえる最小の相対速度である。これを用いれば、

(84)式と対応する式は次のようになる：

< σv >for =< (a
′
+ b

′
v2)v2 >

=
x3/2

2π1/2

∫ ∞

2µ−

dvv2exp[−v2x/4]v2(a
′
+ b

′
v2)

= exp[−µ2
−x]

2z

π1/2

∫ ∞

2µ−

(t/x + µ2
−)

1
2 t

1
2 [(a

′
+ 4b

′
µ2
−) + 4b

′
t/x]e−tdt

(89)

ここで、

µ− = (z − 1)
1
2 /z (90)

である。threshold(z = 1)では µ2
+ = µ2

− = 0となる。このとき上で求めた各ケースの熱平

均化クロスセクション (88)、(90)式は同じものになり、またその積分は以下のようにガウ

ス積分を用いてシンプルに実行可能なものとなる：

< (a
′
+ b

′
v2)v2 >z=1 =

2
π1/2

∫ ∞

0
(t/x)

1
2 t

1
2 (a

′
+ 4b

′
t/x)e−tdt

=
2

π1/2x1/2

∫ ∞

0
te−t(a

′
+ 4b

′
t/x)dt

=
2

π1/2x1/2
(a

′
+ 8b

′
/x)

(91)

この z = 1の場合のクロスセクションを、freeze-out付近 (xf ≈ 25)で、終状態がmassless

粒子のものと比べると、結果は以下のようになる：

• s-wave annihilationの場合
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　　約 0.25のファクターにより suppressされる

• p-wave annihilationの場合

　　約 0.30のファクターにより suppressされる

一般的には、(88)、(90)式は数値的に評価されるものだが、s-waveのクロスセクション

の場合 (b
′
= 0)には解析的に積分を実行することが可能となる：

< a
′
v2 >all =

2z

π1/2

∫ ∞

0
(t/x + µ2

+)
1
2 t

1
2 a

′
e−tdt

= a
′ 2z

π1/2
·
µ2

+x1/2

µ2
+x1/2

∫ ∞

0
(t/x + µ2

+)
1
2 t

1
2 e−tdt

= a
′ µ2

+zx1/2

π1/2

2
µ2

+x

∫ ∞

0
e−tt(1 +

µ2
+x

t
)

1
2 dt

= a
′ µ2

+zx1/2

π1/2

2
µ2

+x
exp[µ2

+x/2]exp[−(µ2
+x/2)]

∫ ∞

0
e−tt(1 +

2
t

µ2
+x

2
)

1
2 dt

(92)

ここで、変形ベッセル関数の積分表示形

K1(z) =
e−z

z

∫ ∞

0
e−tt(1 +

2z

t
)dt (93)

を用いると、結局< σv >allは次式で表わされることになる：

< a
′
v >all = a

′ µ2
+zx1/2

π1/2
exp[µ2

+x/2]K1(µ2
+x/2) (94)

< a
′
v2 >forについても同じ計算により同様の式が得られる。thresholdから離れたところ

(µ2
± → ∞)では、このベッセル関数は近似形で表わすことができる：

K1(µ2
±x/2) ∼

√
π/µ2

±xexp[−µ2
±x/2] (95)

この式を代入することにより、それぞれの極限領域におけるクロスセクションは次のよう

に求められる：

　　　< a
′
v2 >≈ a

′
µ+z = a

′
(1 − z2)

1
2 　　 for m1 ≫ m2

　　　< a
′
v2 >≈ a

′
µ−zexp[−µ2

−x]　　　 for m1 ≪ m2

逆に、threshold(z → 1、µ± → 0)では、近似形のベッセル関数とそれにより得られる熱平

均化クロスセクションは以下のようになる：

　　　　　　　　　K1(µ2
±x/2) ≈ 2/µ2

±x

　　　　　　　　　< a
′
v2 >≈ 2a

′
/(πx)

1
2
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上で求めた (95)式のような形に熱平均化クロスセクションを置き換えることは便利なこ

となのか？あまりそうとは言えない。なぜなら、relic abundanceを計算するためには、ま

ず annihilation integral Jを計算しなくてはならないのだが、(95)式のような形では複雑す

ぎるからである。複雑すぎると言えども、一応数値的にであればこれらを評価することは

可能である。しかし、ここでは、< σv >の振る舞いを理解しやすくするために、< σv >

についての様々な展開式を利用して、近似的な解析的評価についてを調べていく。まず大

きな µ2
±xの場合について考えていく。µ+の場合 (allowed channel)、これは、生成された

粒子がm1に比べ小さなmassをもっているケースに相当し、これに対応する熱平均化クロ

スセクションは

< (a
′
+ b

′
v2)v2 >all≈ (1 − z2)

1
2 [a

′
(1 +

3z2

4x(1 − z2)
) +

6b
′

x
(1 +

5z2

4x(1 − z2)
)] (96)

となる。そして、µ−の場合 (forbidden channel)はm2がとり得る限界の大きさである場

合に相当しており、この場合の熱平均化クロスセクションは次式で与えられる：

< (a
′
+ b

′
v2)v2 >for ≈ zµ−exp[−µ2

−x]

× [a
′
(1 +

3
4µ2

−x
) + 4b

′
µ2
−(1 +

9
4µ2

−x
+

45
32µ4

−x2
)]

(97)

逆に、thresholdのかなり近く、すなわち µ2
±x ≪ 1の場合には熱平均化クロスセクション

は次式のように求められる：

< (a
′
+ b

′
v2)v2 >thr ≈ 2z

π1/2x1/2
[a

′
(1 − x∆) +

8b
′

x
(1 − x∆

2
)]

∆ = z − 1 = (m2 − m1)/m1

(98)

図 6に、x = 25の場合の、３つの近似的結果を数値積分の結果と共に示す：(97)式を見

れば allowed caseに対しての近似において z = 1のときに問題が生じるのは明らかである。

しかし、この近似は thresholdから離れたところではうまく機能する、ということが図か

ら読み取れる。これも図から明らかなことであるが、threshold付近では (99)式を用いて

解析がなされるべきである。したがって、より正確な解析を行うためには、以下のように

区分的にそれぞれの近似を用いて考えていくべきである：

• for s-wave annihilation

< σv >a,PW =


< σv >all x∆ < −0.023

< σv >thr −0.023 < x∆ < 0.023

< σv >for 0.023 < x∆

(99)

• for p-wave annihilation

< σv >b,PW =


< σv >all x∆ < −0.046

< σv >thr −0.046 < x∆ < 0.046

< σv >for 0.046 < x∆

(100)
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図 6: 図 6(a) は”pure s-wave”annihilation(a
′

terms only) の結果、図 6(b) は”pure p-

wave”annihilation(b
′
terms only)の結果を表わしている（Ref[18]より引用）
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上図の縦の実線は用いる近似の変更点を示している。

熱平均化クロスセクションに対する、ここまでに調べてきた様々な結果を用いれば、(50)、

(51)式を利用してセクション 4.2で論じた方法によって relic abundanceを計算することが

可能となる。それによって得られた結果を標準的な結果と比較しやすいようにするために、

ordinary channels(χ1χ1 → XX)と forbidden channelsを明確に分離して書き表わす：

(σv)tot = a11 + b11v
2 + [(a

′
+ b

′
v2)v2] (101)

また、この (σv)totに対応する annihilation integral Jは次式のように書き直される：

J = (atot + 3btot/xf )/xf (102)

この Jに関して注意点がある。それは、ここでの xf は (σv)tot と (49)式を使って逐次近

似法で求められる新たな xf である、という点である。atot、btotも forbidden channelsと

ordinary channelsの部分を分けて表わされる：

atot = a11 + a
′
I
′
a

btot = b11 + b
′
I
′
b

(103)

I
′
a ≡

xf

a′

∫ ∞

xf

< a
′
v2 > x−2dx

I
′
b ≡

2x2
f

b′

∫ ∞

xf

< b
′
v2v2 >

6
x−2dx

(104)

この式に (99)式を代入して積分を実行すると、threshold付近での値が求められる：

I
′
a,thr ≈ 4z

3π1/2x
1/2
f

(1 − 3xf∆)

I
′
b,thr ≈ 32z

15π1/2x
1/2
f

(1 − 5
6
xf∆)

(105)

forbidden region、allowed regionに対応する I
′
a、I

′
bも同様にして求めることが出来る：

I
′
a,for ≈ z

µ−xf
exp[−µ2

−xf ]

I
′
b,for ≈ 4

3
zµ−exp[−µ2

−xf ](1 +
1

4µ2
−xf

)
(106)

I
′
a,all ≈ (1 − z2)1/2(1 +

3z2

8(1 − z2)xf
)

I
′
b,all ≈ (1 − z2)1/2(1 +

5z2

6(1 − z2)xf
)

(107)

thresholdのはるか上 (z ≪ 1)では、I
′
a ≈ I

′
b ≈ 1となり、当然のことながら、standard

の場合と同じ結果になる。これまでに他の研究でなされてきた計算では threshold での

annihilationによる relic abundanceへの影響は特に何も示されてこなかった。ところが実

際には、xf = 25の場合、(106)式により
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• s-wave annihilationに対しては、z ≪ 1という極限下での結果に対して 15％の影響

• p-wave annihilationに対しては、z ≪ 1という極限下での結果に対して 25％の影響

が出てくるという結論が導き出された。

より詳しく解析を行うために、ここから forbidden channel caseが重要となる場合の∆

の値について議論していく。まずは、pure s-wave annihilationのケースについて考えてい

く。以下のように表記法を定義して使っていく：

　 (σv) = a11 =⇒ マスレス粒子への annihilationのクロスセクション

　　 (σv)for = a
′
v2 =⇒ forbidden channelのクロスセクション

また、評価しやすくするために、forbidden channelの強さを次のようにパラメーター化

する：

a
′
= A

′
a11 (108)

=⇒ すなわちA
′
は、もし forbidden channelが運動学的に suppressされていなけれ

ば、forbidden annihilationがクロスセクションの中でどれだけ支配的になっている

かを表わすファクターである

例えば、

　　 (neutralino) + (neutralino) −→ (Higgs) + (Higgs)

という反応に対してはA
′ ≈ 50 ∼ 500となる。また、neutralinoが annihilationして終状態

が top quarksやW+W−となる場合でもA
′
の値は大きくなるであろうことが予測される。

図 7に、xf,old = 25の場合の、様々なA
′
の値に対応して relic abundanceがどのように

変化するかを示す：図の中の実線はA
′
= 20、100、500に対して< σv >を数値積分した

結果を表わしている。また、図の中の点線は、A
′
= 500に対して、annihilation integral J

を (100)式、(101)式のクロスセクションを用いて数値的に評価したものを表わしている。

実線と点線との一致精度は 10％以下でしかエラーが出ないほどの良さであり、近似式も区

分的に用いれば有効であることが実証されたことになる。

図 7から、massが thresholdより 10∼15％ほど下の場合でさえも、A
′
の値次第では new

channelsが重要となる、ということが分かる。このサブセクションで調べたことをまとめ

ると以下のようになる：

• もし∆ < 0.05 ∼ 0.1であり、unsuppressed forbidden channelsのクロスセクションが

allowed channelsのクロスセクションより 10倍以上の大きさであれば、この channels

の影響は重要である

• thresholdより上で普段使っているテイラー展開が適用可能である領域は∆ ≥ −0.02

である
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図 7: 様々なA
′
に対応して変化する relic abundanceの様子。図 7(a)は pure s-wave anni-

hilationの場合の Ωの変化を表わしており R = Ωold/Ωnew = (1 + A
′
I
′
a)xf,old/xf,new、ま

た図 7(b)は pure p-wave annihilationの場合のΩの変化を表わしておりR = Ωold/Ωnew =

(1 + A
′
I
′
b)x

2
f,old/x2

f,newである。（Ref[18]より引用）
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これを neutralinoからHiggs bosonへの反応を例に考えてみる。前に述べたように、χχ →
HH という反応では A

′
= 50∼500が典型的な値である。したがって neutralinoの relic

abundanceを調べる際には、neutralino massが v = 0の kinematic thresholdより 10∼15

％ほど小さな場合、この channelsも含めて考えるべきである。

ここまでの 2つのサブセクションで見てきたように、coannihilation case、forbidden case

ともに relic particlesよりもわずかに重い粒子が存在していた。同様の設定をもつこれら2つ

のケースであるが、これらには大きな違いがある。それは、dark matterの relic abundance

決定に大きく影響する反応の違いである。coannihilation caseにおいては、relic particles

と extra particlesとの annihilationがクロスセクションにおいて支配的になるのに対し、

forbidden caseにおいては relic particles同士の annihilationが重要となる。つまり、relic

particlesがどんな粒子であるか、extra particlesとどんな関係にあるか、などによってど

ちらのケースが relic abundance決定に影響するかが決まることになるということである。

4.5 annihilation near poles

ここのサブセクションでは、プロパゲーターのポール付近領域で起こる annihilationは

relic abundance決定に大きく関わる、ということについて調べていく。これは、例えば、

プロパゲーターとして z-ボソンまたはスカラー粒子が入る s-channelの反応において起こ

りえる。また、annihilationする dark matterが J/ψ、η、Υ粒子などの resonanceの 1/2

くらいのmassを持っている場合にも今考えているケースに関わってくる。これまでの研

究では様々な近似を使ってこれらのようなケースを扱ってきた。しかし、それらのような

近似ではポール付近でかなりのエラーが出てしまうので、その適切な処置についてを考え

ていく。

ここでは、次式のような形のクロスセクションを用いて解析を進めていく：

σv =
α2s

(M2
ex − s) + M2

exΓ2
ex

(109)

　　　　　 α ≈ 0.01 =⇒何らかの coupling constant

　　　　　Mex =⇒プロパゲーターに入る粒子のmass

　　　　　 Γex =⇒プロパゲーターに入る粒子の total width

　　　　　 s = 4m2
1/(1 − v2/4) =⇒マンデルシュタム変数

　　 　　　 v =⇒相対速度

プロパゲーターにどんな粒子が入った場合でも統一的に扱えるようにするために以下の

量を定義する：

u = (
2m1

Mex
)2

ϵ = (
Γex

Mex
)2

(110)
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これらを使うとクロスセクションは次式のように書き直される：

σv =
α2u/(1 − v2/4)

M2
ex[[1 − u/(1 − v2/4)]2 + ϵ]

(111)

ϵは非常に小さな量なので 0とみなして考えると、相対速度 v = 0ではポールは u = 1の

ところに現れる。より一般的には、ポールは以下の点に現れる：

up = 1 − v2
p/4

vp = 2(1 − up)1/2
(112)

また、ポールにおけるクロスセクションは次の値になる：

(σv)pole = α2/(M2
exϵ) (113)

初期の頃の relic abundanceの研究においては軽い dark matterに重点が置かれて調べ

られており、相互作用としては 4-フェルミ相互作用が用いられて議論されていた。当然の

ことながら、これではポールが存在する場合の影響について正しく評価することは出来な

い。大雑把な見積もりでも、以下の２つの例に示すように、ポールの有無は重要である：

例 1（z resonanceの場合）

この場合 ϵz ≈ 7.5 × 10−4であり、(114)式などと合わせて考えるとポール付近での

クロスセクションの値はポールから離れたところでの値よりかなり大きくなる

例 2（J/ψ、η、Υ粒子などの resonanceの場合）

この場合 ϵψ ≈ 4.8 × 10−10、ϵη ≈ 3.7× 10−6、ϵΥ ≈ 3.0 × 10−11であり、ポール付近

でのクロスセクションの値は z-ボソンのケースより、さらに高いピークをもつことに

なる

=⇒しかし、これらのケースにおいては、クロスセクションは (110)式のような形の

ままではないため、修正が必要となる

さて、実際に relic abundanceの具体的な計算においてクロスセクションを利用するため

には、まず、それを熱平均化しなくてはならない。この熱平均化の標準的な方法には、ク

ロスセクションを v2についてテイラー展開し< v2 >= 6/xで置き換える、というものが

ある（ただし、x = m1/T）。ところが、小さな ϵに対しては v2についての展開はポール付

近で破綻し、適切な結果が得られない。(112)式のケースにおいてはクロスセクションが

負にすらなりえてしまう。これまでの研究では、ポール付近でもこのような展開を使って

しまっている。この展開に対しては、より一般的なアプローチも存在する。それは、テイ

ラー展開する前にまずポールファクター

　　　　　　　 P (v2) = [[1 − u/(1 − v2/4)]2 + ϵ]−1
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を一旦取り除き、展開後の結果に相対速度 v = 0としたこのファクターP (0)をかける、と

いう方法である。今考えているクロスセクション (112)式は、この方法により、次式のよ

うに近似熱平均化が求められる：

< σv >0=
α2u

M2
ex

[1 +
3
2x

] (114)

他にも熱平均化の方法として、σvの中の v2を v2 → 6/xとじかに置き換え、それを< σv >

の近似的結果とする、というものがある。この方法で求められた近似熱平均化クロスセク

ションは単純に次式で表わされる：

< σv >subs= (σv)v2=6/x (115)

以下で見ていくように、この近似式はポールから離れたところで高精度の近似結果をもた

らす展開式である。

このサブセクションのメインポイントの１つは、前の段落で見てきた２つの近似は ϵが小

さい場合のポール付近では全くあてにならない、という事を示すことである。そのために以

下の図 8で、uの関数として< σv >の数値的評価をプロットし、それと近似式< σv >0、

< σv >subs、テイラー展開との比較を示す：図において’num’、’subs’、’0’、’Taylor’と記

してある曲線は、それぞれ、< σv >num、< σv >subs、< σv >0、< σv >Taylorを用いて

導出したものを表わしている。< σv >の数値的評価は次式を用いてなされる：

< σv >num=
x3/2

2π1/2

∫ ∞

0
dvv2(σv)exp[−xv2/4] (116)

図 8(a)は、z-ボソンがプロパゲーターとして入る場合、すなわち、ϵ = 7.5× 10−4、Mex =

91GeV、α = 0.01、x = 25の場合の結果を表わしている。テイラー展開式はm1 < Mexの

場合は有効であるけれども、m1 > Mexの場合には（負のクロスセクションを生み出して

しまう、という意味でも）かなり不適切である。また、z-ボソンがプロパゲーターとして入

るケースでは、ポールから離れたところでの< σv >subsは< σv >0 よりわずかに良い精

度で結果を与えている、しかしどちらの近似においても正しい位置にポールはこない。ク

ロスセクションの値に注目すると、同じ uの点において見比べることにより、数値的結果

とこれら２つの近似の値とではファクターで 3以上のズレが生じていることが読み取れる。

図 8(b)は ϵ = 10−6とし、それ以外のパラメーターは (a)と同じにしてそれぞれの結果

をプロットしたものである。このようなパラメーター設定の場合、グラフに以下のような

特徴が現れる：

• 近似評価と数値的評価とのズレが (a)より大きい

• 数値の結果にくらべ近似の方はかなり狭く、鋭いピークをもつ

すなわち、ϵが小さいほど近似とのズレが顕著になり、ポール付近での扱いをしっかりと考

慮する必要があるということになる。

上の議論において注意しておくべき点がある；それは、(117)式においてでさえも少なく

とも２つの近似が使われている、という点である。具体的には以下のようなものである：
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図 8: < σv >の数値的評価と< σv >0と< σv >subsとテイラー展開との比較（Ref[18]よ

り引用）
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図 9: (117)式の数値的評価とRef[3]において与えられている 3次元積分の数値評価の比較

（Ref[18]より引用）

• xは十分に大きい、すなわち exp[−xv2/4]は非常に小さい、という仮定

• 重心系における様々な物理量の平均化

=⇒これは、Srednicki、Watkins、Oliveによって指摘されているように、完全には

正しいものではない [Ref[14]]

今考えているようなポールの有無を考慮したケースにおいては、クロスセクションは v2に

ついて非多項式の依存形をもっているが、これまでには多項式依存に関してのみしかテス

トされていない。よってこれらの近似が 10∼20％以上のエラーを出してしまうかもしれな

い、という不安が残る。(117)式において使われているこれらの近似が有効なものであるか

どうかをチェックするためには、Ref[3]において与えられている 3次元積分を実行してみれ

ばよい。下の図 9に (117)式の数値的評価と 3次元積分の数値評価の比較を示す。図 9から

分かるように、これら２つの評価方法は 20％以下のズレでかなり精度よく一致している。

このズレについて補足を加えておく；このズレのいくつかは、実際には、数値積分のルー

チンが原因となっているものかもしれない、このルーチンではかなり鋭いピークをもつ関

数の積分を実行する際にトラブルを出しえる。最も高精度の結果を必要とするのであれば、

(117)式を Ref[3]の (26)式に置き換えて解析すべきである。ただし、Ref[3]において与え

られている展開式は使うべきではない、という点を注意しておく。その理由は、この展開

式は前に論じたポール付近でのテイラー展開と同じ問題点を抱えているからである、つま
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りこれは上で見てきたシンプルな近似よりも不適切なものということになる。

図 8に戻り、シンプルな近似 [(115)式、(116)式]と (117)式によって調べられる数値的

評価との違いについて考察していく。数値的評価における熱平均の式は、数学的には単純

に、”重み付き”の面積を表わしているものである。一方、近似の二つにおいては、どちら

もピークの高さをそのまま平均として用いている。(117)式の数値的評価についてをより詳

しく考えていく。小さな ϵと u < 1の場合、ピーク近傍の面積によってこの積分の値は支

配されている。実際、ピーク [vp = 2(1 − u)1/2 for u < 1]のまわりで展開することによっ

て、この積分は近似的に表わすことが可能である。これを具体的に示していく。ピーク近

傍において変数を ν = v − vpと置き換え、νが小さいことを用いると

u

1 − v2/4
≈ 1 + ν(1 − u)1/2 (117)

と近似することができ、これによって (117)式も次式のように近似できることになる：

< σv >≈ x3/2

2π1/2
v2
pexp[−xv2

p/4]
α2

M2
ex

∫ ν0

−ν0

dν

[ν2(1 − u)/u2] + ϵ
(118)

　　 ν0 ≪ vp =⇒ピーク近傍のある小さな区間を決めているパラメーター

この式中の積分を評価すると∫ ν0

−ν0

[ν2(1 − u)/u2] + ϵ

dν
=

2u√
ϵ(1 − u)

arctan[ν0(
1 − u

ϵu2
)1/2] (119)

となる。ここで、もし
√

ϵが ν0

√
1 − uに比べて小さければ、arctan[ν0(1−u

ϵu2 )1/2] ≈ π/2と

近似できる、この値が ν0と独立の値になっている点に注目しておく。この近似を代入後の

(119)式とクロスセクションの最大値 < σv >pole= α2/(ϵM2
ex)とを比べると、以下の結果

が得られる：

rσ =
< σv >

< σv >pole

≈
x3/2

2π1/2 4(1 − u)exp[−x(1 − u)] α2

M2
ex

2u√
ϵ(1−u)

π
2

α2

ϵM2
ex

= 2
√

πx3/2u
√

ϵ(1 − u)1/2exp[−x(1 − u)]

(120)

最終的に、ポールの位置として
√

u ≈ 0.98とすると、x ≈ 25に対して、次式が得られるこ

とになる：

rσ ≈ 31
√

ϵ (121)

ϵ = 10−6の場合、rσ ≈ 0.03という結果になり、これは図 8(b)で示したことと一致する。し

かし ϵ = 7.5×10−4の場合には、適切な ν0の値に対して不等式
√

ϵ ≪ ν0

√
1 − uと ν0 ≪ vp

が満たされない。そのため arctan[∼]のファクターを近似的に扱えず、複雑な式の形のま

ま解析しなくてはならない。図 8(b)に対応するパラメーターの選び方があったように、図
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8(a)に対応するパラメーターのとり方も存在している。具体的には、ν0 ≈ 0.1と取ると

rσ ≈ 0.37という結果が得られ、これは確かに図 8(a)の曲線に一致するものになる。一般

的に、(120)式の解が ν0と独立な値になるくらい小さな ϵに対しては、(121)式はポール付

近で精度良い近似を与える。この近似による結果は図 8(b)に long-dashed curveで示され

ている。ただし、大きな ϵに対しては、(119)式から導かれるこの近似は有効な精度をもつ

ものではなくなってしまう、という点は注意すべきである。

ここまで < σv >についての議論をいろいろとしてきたが、実際に知りたいのは relic

abundance Ω1h
2である。これを求めるためにはまず annihilation integral Jを計算しなく

てはならない。計算便利化のために Jを xと vについての二重積分の形に書き直す。そう

すると、xについての積分は容易に実行可能となる：

J =
∫ ∞

0
dv

v2(σv)√
4π

∫ ∞

xf

dxx−1/2exp[−xv2/4]

=
∫ ∞

0
dv(σv)erfc(v

√
xf/2)

(122)

　　　　　 σv　 =⇒熱平均化していないクロスセクション

　　　　　 erfc =⇒ complementary error function

この Jの表式は完全に一般的なものであり、annihilation integralを求めるためにあらゆる

ケースにおいて使用可能なものである。a + bv2の形の σvに対しては、(123)式は標準的

な結果 [(52)式]を与えることになる。ところが、ここで考えているようなポールを持つク

ロスセクションの場合、(123)式は数値的に評価されなくてはならないものである。

図 10、11は freeze-out方程式の逐次近似解と (123)式の数値評価から得られる結果を表

わしたものである（比較のために < σv >に対する近似解の結果も示してある）： 前に論

じた近似< σv >0、< σv >subsを用いるとそれぞれに対応する annihilation integral Jは

以下のように求められる：

J0 =
α2u

M2
ex

[1 +
3

4xf
]
P (0)
xf

Jsubs ≈< σv >subs [1 − 3
4xf

]
1
xf

(123)

図 10、11はこれを用いてプロットしてある。この図から読み取れるように、近似を用いた

結果では ϵ = 7.5 × 10−4の場合にはファクターでおよそ 3、ϵ = 10−6の場合にいたっては

オーダーでいくつか異なるほどのズレがどうしても出てしまうようである。

最後に、図 10、11に示されている結果を解析的に調べていく。その方法は σvをポール

のまわりで展開する、というものであり、これによって次式の annihilation integral Jが得

られる：

J ≈ 4α2

M2
ex

u√
ϵ
erfc[

√
xf (1 − u)]arctan[ν0(

1 − u

ϵu2
)1/2] (124)

この近似的な Jを用いた結果を図 11に long-dashed curveで示しておく。前の方での議論

と同様に、小さな ϵに対してはポール付近においてこれは精度良い近似となるが、ϵがある
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図 10: freeze-out方程式の逐次近似解と (123)式の数値評価から得られる結果の比較（ϵ =

7.5 × 10−4の場合の結果）（Ref[18]より引用）

図 11: freeze-out方程式の逐次近似解と (123)式の数値評価から得られる結果の比較（ϵ =

10−6の場合の結果）（Ref[18]より引用）
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程度以上の大きさになると（例えば ϵ = 7.5× 10−4の場合）、うまく整合性が保てなくなっ

てしまう、という点は注意しておくべきである。小さな ϵに対してのΩの変化は以下の rΩ

を用いて評価することが出来る：

rΩ =
Ω

Ωpole
=

Jpole

J

≈ [2πϵ1/2uxferfc[
√

xf (1 − u)]]−1

(125)

　　　　　　 Jpole ≈ α2up

M2
exϵxf

　　　　　　 Ωpole =⇒ポールにおける relic abundance

[このサブセクションのまとめ]

• ポールから離れた領域では、クロスセクションを普段利用している形のテイラー展開
で解析すればよいのだが、dark matterの annihilationがポール近傍の領域で起こる

場合には特殊な扱い方が必要となる　

• このサブセクションでは１つのタイプのポールについてのみ調べてきたが、一般的
に、クロスセクションの中にせまい resonancesがあるならば、熱平均と annihilation

integralはその解析方法を考え直す必要がある　　　　　

4.6 このセクションの応用例

このセクション、特に coannihilation caseについての応用例についてをRef[19]の議論に

基づいて見ていく。具体的に考えてるのはLSPを neutralinos、NLSPを stauとして考えて

いるMSSMである。現在、宇宙論的な観測と素粒子論的実験とからdark matter粒子の relic

abundanceとmass には厳しく制限が付けられている。ところが、coannihilationが大きく

影響する場合、すなわち neutralinosと stauのmassが非常に近いとした場合には、この制

限に大きな変化が現れる。ここでは詳しい計算は避けるが、この制限をこれらの質量差に注

目して考えると、観測に反しないパラメーター領域は以下の図によって示されることになる。

図における薄い影の部分は、coannihilationを考慮した場合に、0.1 ≤ Ωh2 ≤ 0.3に対応す

る宇宙論的に許される質量領域を表わしている。一方 light dashed linesは、coannihilation

を考慮しない場合に、宇宙論的に許される質量領域を表わしている。tanβなどのパラメー

ターによって多少異なるが、いずれの図においても許される質量領域は、coannihilationを

考慮しない場合に比べて、広がっていることが読み取れる。したがって、ここのセクショ

ンで論じてきた特殊な扱いを考慮するかしないかで注目すべき質量領域も大きく異なるも

のになる。

次のセクションでは本研究の集大成として、この coannihilation caseの結果が将来の加

速器における物理にもたらしえる成果について調べていく [Ref[20]]。その成果とは、後の

セクションで詳しく見ていくように、coannihilationが十分効果的になるくらいの質量差を

考えた場合NLSPであると考えている stauが超長寿命化しえるので、それを大型 detector

を用いて捕獲、さらに研究に利用するというものである。
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図 12: 様々なMSSMパラメーターに対応する許される質量パラメーター領域 (Ref[19]よ

り引用)
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5 long lifetime stau

5.1 超対称性粒子の研究への応用

LHCや ILCのような将来稼動予定の超高エネルギー加速器実験においては、超対称性粒

子の生成反応が起こりうる。超対称性理論の研究のためには、これらを大量に集め、様々

な反応を観測、解析しなくてはならない。しかし、素粒子の寿命は一般的に非常に短く、前

のセクションでも少し触れたように、最も軽い超対称性粒子以外はすぐにより軽い粒子へ

と崩壊してしまう。R-parityの保存を考慮すると、この最も軽い超対称性粒子（LSP）は

崩壊せずに安定な粒子となるのだが、多くのモデルでは、LSP として neutralino、または

gravitinoを考えている。この neutralinoというのは、B-ボソン、ウィークボソン、ヒッグ

スボソンそれぞれの superpartnerの線形結合からなる粒子であり、gravitinoというのは

gravitonの superpartnerである。どちらも相互作用が弱く、また、chargeを持たないため

検出が非常に難しい。よって、LSPを大量に集めるのはほぼ不可能であると考えられる。

ここで dark matterに目を向ける。既に述べたように LSPは R-parityの保存を考慮す

ると宇宙年齢のスケールで安定な粒子となるため、dark matterの候補となり得る。した

がって、この論文においては、dark matterとして bino-like neutralino（以後 binoと呼ぶ

ことにする）を仮定して考える。さらに、前のセクションでこの binoのmassと同じくら

いの massを持つ粒子が存在すれば、binoの relic abundanceに大きな影響がでるという

ことを見たが、この事から neutralinoは dark matterである可能性がより高くなる。よっ

て、この論文においても、LSP massと同じくらいの massをもつ、LSPの次に重い粒子

（NLSP）の存在を仮定する。ここでは、tau粒子の superpartnerである stauを NLSPと

して考えていく。

ここから LSPと同程度のmassを持つNLSPを含めて考えていくわけであるが、では一

体どのくらいの質量差であれば neutralinoは dark matterの候補となり得るのであろうか？

この疑問の答えとも言える議論は既に前のセクションのまとめで見た通りである。ここで

の内容に関する事のみ簡単に述べると、以下のようになる。質量差が大きくなりすぎると、

coannihilationが効かなくなり、観測に反する量の neutralinoがこの宇宙に残っているこ

とになってしまう。では逆に質量差が小さすぎるとどうなるか、というと、この場合には

特に制限が付けられるということはない。なぜなら、セクション 3で述べたように、dark

matterの全成分を neutralinoのみで説明する必要が無く、dark matterは数種類の粒子か

ら構成されていると考えることが可能であるからである。（実際、ニュートリノの寄与はわ

ずかではあるが入っていることが分かっている。）

NLSPとして stauを考えた場合、stauから tauと neutralinoという反応が stauの崩壊

モードの中でかなり支配的になる。ところが、もし stau massと neutralino massの質量差

が tau mass以下であれば、tauを on-shellで生成することが出来なくなり、stauは electron

や pionなどを生成するモードでしか崩壊できなくなる。これらの反応のダイアグラムを以

下に示しておく：
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以下では (a)、(b)、(c)それぞれの場合の decay rateを計算し、特に (c)の場合には decay

rateは非常に小さくなり、stauは超長寿命化することを示す。そうすると、加速器で生成

された stauを大量に集めることが可能になり、超対称性理論の研究に大いに利用すること

ができる。

5.2 二体崩壊

まずは、質量差が tau mass以上の場合について調べていく。このとき stauの崩壊は tau

と neutralinoへの二体崩壊がメインとなるので、以下ではこの崩壊の decay rateを計算し

ていく。この相互作用を記述している部分のラグランジアンは次式のものである：

L = τ̃∗ ¯̃BG̃(τ)τ + h.c. (126)

ただし、

G̃(τ) = gRPR + gLPL

= (
√

2g2sin[θτ ]eiγτ )PR + (
1√
2
g2cos[θτ ])PL

(127)

である。ここで θτ は stauの混合角、γτ はCP violating phaseを表わすものである。まず

は、このラグランジアンを用いて振幅Mとその複素共役M∗を求める：

M =< B̃τ | τ̃∗ ¯̃BG̃(τ)τ + h.c. | τ̃ >

=< B̃τ | τ̄ G̃(τ)′B̃τ̃ | τ̃ >

= ūs(pτ )G̃(τ)′vt(pB̃)

(128)

M∗ = [ūs(pτ )G̃(τ)′vt(pB̃)]∗

= [u†s(pτ )γ0G̃(τ)′vt(pB̃)]∗

= v†t(pB̃)G̃(τ)′γ0us(pτ )

= v†t(pB̃)γ0G̃(τ)us(pτ )

= v̄t(pB̃)G̃(τ)us(pτ )

(129)

ただし、

G̃(τ)′ = g†RPL + gLPR

= (
√

2g2sin[θτ ]e−iγτ )PL + (
1√
2
g2cos[θτ ])PR

(130)
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である。これらから振幅の二乗 | M |2を計算する、また以下では G̃(τ) = G̃、G̃(τ)′ = G̃
′

と書き表すことにする：

| M |2 = ūs(pτ )G̃
′
vt(pB̃)v̄t(pB̃)G̃us(pτ )

= tr[(/pτ + mτ )G̃
′
(/pB̃ − mB̃)G̃]

(131)

ここで、

　 [γµ, γ5]+ = 0 =⇒ PLγµ = γµPR、PRγµ = γµPL

　 tr[ any odd number of γ
′
s] = 0 、 tr[γ5] = 0、tr[γµγνγ5] = 0

を考慮して、残る項だけを取り出すと

| M |2 = tr[/pτ/pB̃G̃G̃ − mτmB̃G̃
′
G̃]

= tr[/pτ/pB̃(g†RgRPR + g2
LPL) − mτmB̃(g†RgLPL + gLgRPR)]

= tr[
1
2
pτµpB̃ν(γ

µγν)(g†RgR + g2
L) − 1

2
mτmB̃(g†RgL + gLgR)]

=
1
2
· 4gµνpτµpB̃ν(g

†
RgR + g2

L) − 1
2
· 4mτmB̃(g†RgL + gLgR)]

= 2pτ · pB̃(g†RgR + g2
L) − 2mτmB̃(g†RgL + gLgR)]

= (g†RgR + g2
L)(m2

τ̃ − m2
τ − m2

B̃
) − 2mτmB̃(g†RgL + gLgR)]

(132)

今考えている研究において重要なのは stauと binoの質量差 δm = mτ̃ − mB̃ であるので、

これを使って | M |2を書き直すと、結果として次式が得られることになる：

| M |2 = (g†RgR + g2
L)[(δm)2 + 2δmmB̃ − m2

τ ] − 2mτmB̃(g†RgL + gLgR)] (133)

2体崩壊の場合、一般的に、ある粒子の静止系においてその粒子 (mass m)の decay rate

Γは次の式で与えられる：

Γ =
| p⃗ || M |2

8πm2
(134)

すなわち、stauの二体崩壊の decay rateを求めるためには、あとは | p⃗τ |さえ分かればよ
いということになる。以下ではこの | p⃗τ |を求めていく。その準備として、まず、Eτ を粒

子のmassのみで書き表す、stauの静止系で考えるとマンデルシュタム変数 sは次のよう

に式変形することができる：

√
s = Eτ + EB̃

= Eτ +
√

p⃗2
B̃

+ m2
B̃

= Eτ +
√

p⃗2
τ + m2

B̃

= Eτ +
√

E2
τ − m2

τ + m2
B̃

(135)
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あとは左辺のEτ を右辺に移項して、両辺を二乗すれば次式が得られる：

Eτ =
m2

τ̃ + m2
τ − m2

B̃

2mτ̃

(136)

これを用いると、

| p⃗τ | =
√

E2
τ − m2

τ

=

√
(
m2

τ̃ + m2
τ − m2

B̃

2mτ̃
)2 − m2

τ

(137)

となる。ここでも δmを使ってこれを書き直しておく：

| p⃗τ | =
1

2(δm + mB̃)

√
[(δm)2 − m2

τ ]2 + 4mB̃(δm + mB̃)[(δm)2 − m2
τ ] (138)

したがって、τ̃ → B̃τ という反応に対する stauの decay rateが次式のように求められた：

Γ =
| p⃗τ̃ || M |2

8πm2
τ̃

=
8π(δm + mB̃)2 · 2(δm + mB̃)√

[(δm)2 − m2
τ ]2 + 4mB̃(δm + mB̃)[(δm)2 − m2

τ ]

× 1

(g†RgR + g2
L)[(δm)2 + 2δmmB̃ − m2

τ ] − 2mτmB̃(g†RgL + gLgR)]

(139)

この結果を用いてこの反応しか起こらないとした場合の stauの寿命を求めてみると、ど

んなに δmを小さくしてもせいぜい∼ 10−20（秒）程度にしかならない。これでは、当然の

ことながら、stauを集めるのは到底無理である。ところが、さらに δmが小さい場合、す

なわち δm ≤ mτ の場合は寿命が大幅に伸びる。以下のサブセクションではそれについて

を詳しく調べていく。

5.3 四体崩壊

次に質量差が tau mass以下の場合どうなるかについて考える。この場合、tauを on-shell

で生成することが出来ないので、stauは主に以下の反応を通して decayすることになる：

τ̃ −→ B̃ντµνµ (140)

τ̃ −→ B̃ντeνe (141)

τ̃ −→ B̃ντπ (142)

ここで注意しておくべき点がある；それはこれら以外にも stauが decayし得る反応が存在

するという点である。例えば、終状態は (139)式や (140)式と同じであるが、プロパゲー

ターが tauではなくwinoになる場合などが考えられる。しかし、このような反応のクロス

セクションは、一般に、プロパゲーターに入る粒子のmassの 4乗で suppressされ、上の
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3つに比べると非常に小さなクロスセクションになる。よって、質量差が tau mass以下の

場合では上の 3つの反応だけが主に効いてくることになるので、他の反応は考えないこと

にする。ここのサブセクションでは上の 3つの反応のうち、4体崩壊の decay rateについ

てを詳しく調べていくことにする。

4体崩壊 [(139)式、(140)式]の decay rateを求めるために必要となるラグランジアンは、

電荷の保存や始状態が stauであることなどを考慮すると、次式のようになる：

L = L１ + L2 + L3　

L１ = τ̃∗ ¯̃BG̃τ + τ̄ G̃́ B̃τ̃

= g†Rτ̄PLB̃τ̃ + gLτ̄PRB̃τ̃

L２ =
1√
2
g２ν̄τ LγµWµ

+τL

L３ =
1√
2
g２ēLγµWµ

−νeL

(143)

これらのラグランジアンを使って振幅を求めていく（ただし、以下では electronの場合の

みを考えていく。muonについても導出の流れは全く同じである。）：

M =＜ eν̄eντ B̃ | L１L２L３ | τ̃＞

=
1
2
g†Rg2

２＜ eν̄eντ B̃ | ēLγµW−
µ νeLν̄τ LγνW †

ν τLτ̄PLB̃τ̃ | τ̃＞　

+
1
2
gLg2

２＜ eν̄eντ B̃ | ēLγµW−
µ νeLν̄τ LγνW+

ν τLτ̄PRB̃τ̃ | τ̃＞

(144)

二行目第一項をM１,第二項をM２とおく。

まずはM１を計算していく（
1
2g†Rg2

２は計算中省略する）。計算の際、tauが off-shellで

しか出れないような状況を考えていくので、中間状態として入るW‐bosonについて P 2
W

≪m2
W となることよりプロパゲーターとして次式を用いる：

−igµν

p2
W − m2

W

∼ igµν

m2
W

(145)

始状態、終状態と各粒子とで縮約を考えていくと以下のようになる：

M１ =＜ eν̄eντ B̃ | ēPRγµW−
µ PLνeν̄τPRγνW+

ν PLτ τ̄PLB̃τ̃ | τ̃＞　

= ūs(pe)PRγµPLvt(pν̄e)ūu(pντ )PRγν igµν

m2
W

PL
i( /pτ + mτ )
p2

τ − m2
τ

PLvr(pB̃)

=
−1
m2

W

1
p2

τ − m2
τ

ūs(pe)γµPLvt(pν̄e)ūu(pντ )γνgµνmτPLvr(pB̃)

(146)

ここで二行目から三行目にいく際以下の式を用いた：

PRγµPL = γµPLPL

= γµPL

PL( /pτ + mτ )PL = PL /pτPL + PLmτPL

= /pτPRPL + mτPLPL

= mτPL

(147)
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振幅の二乗を求めるために、M１の複素共役を求める：

M∗
１ =

−1
m2

W

1
p2

τ − m2
τ

(us†(pe)γ0γµPLvt(pν̄e)u
u†(pντ )γ0γνgµνmτPLvr(pB̃))∗

=
−1
m2

W

1
p2

τ − m2
τ

vr†(pB̃)PLmτgµνγ
ν†γ0uu(pντ )vt†(pν̄e)PLγµ†γ0us(pe)

=
−1
m2

W

1
p2

τ − m2
τ

v̄r(pB̃)PRmτgµνγ
νuu(pντ )v̄t(pν̄e)PRγµus(pe)

(148)

ここで二行目から三行目にいく際に以下の関係式を用いた：

γµ† = γ0γµγ0 (149)

（145）と（147）より振幅M１の二乗が求まる：

| M１ |2 = (
−1
m2

W

1
p2

τ − m2
τ

)2(ūs(pe)γµPLvt(pν̄e)ūu(pντ )γνgµνmτPLvr(pB̃))

× (v̄r(pB̃)PRmτgρσγσuu(pντ )v̄tPRγρus(pe)

= (
−1
m2

W

1
p2

τ − m2
τ

)2(ūs(pe)γµPLvt(pν̄e)v̄t(pν̄e)PRγρus(pe))

× (ūu(pντ )γνgµνmτPLvr(pB̃)v̄r(pB̃)PRmτgρσγσuu(pντ )

= (
−1
m2

W

1
p2

τ − m2
τ

)2tr[(/pe + me)γµPL(/pν̄e
)PRγρ]

× tr[m2
τ (/pντ

)γνgµνPL(/pB̃ − mB̃)PRgρσγσ]

(150)

（149）の traceを一つずつ計算していく：

⋆ −→ tr[(/pe + me)γµ(/pν̄e
)γρPL] =

1
2
tr[(/pe + me)γµ/pν̄e

γρ(1 − γ5)]

=
1
2
tr[pexpν̄eyγ

xγµγyγρ(1 − γ5)]

=
1
2
4pexpν̄ey(g

xµgyρ − gxygµρ + gxρgµy + iϵxµyρ)

= 2(pµ
e pρ

ν̄e
− (pe · pν̄e)g

µρ + pρ
epν̄e + ipexpν̄eyϵ

xµyρ)

⋆⋆ −→ tr[m2
τ/pντ

γµ /pB̃γρPL] =
1
2
m2

τ tr[/pντ
γµ/pB̃γρ(1 − γ5)]

=
1
2
m2

τp
α
ντ

pβ

B̃
tr[γαγµγβγρ(1 − γ5)]

=
1
2
4m2

τp
α
ντ

pβ

B̃
(gαµgβρ + gαρgµβ − gαβgµρ − iϵαµβρ)

= 2m2
τ (pντ µpB̃ρ + pντ ρpB̃µ − (pντ · pB̃)gµρ − ipα

ντ
pβ

B̃
ϵαµβρ)

(151)

⋆と ⋆⋆の実部同士の積：

Re(⋆) × Re(⋆⋆) = 4m2
τ (p

µ
e pρ

ν̄e
− (pe · pν̄e)g

µρ + pρ
ep

µ
ν̄e

) × (pντ µpB̃ρ + pντ ρpB̃µ − (pντ · pB̃)gµρ)

= 8m2
τ [(pe · pντ )(pν̄e · pB̃) + (pe · pB̃)(pν̄e · pντ )]

(152)
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⋆と ⋆⋆の虚部同士の積：

Im(⋆) × Im(⋆⋆) = 4m2
τpexpν̄eyp

α
ντ

pβ

B̃
ϵxµyρϵαµβρ

= 4m2
τpexpν̄eyp

α
ντ

pβ

B̃
ϵxyµρϵαβµρ

= 4m2
τpexpν̄eyp

α
ντ

pβ

B̃
(−2)(δx

αδy
β − δx

βδy
α)

= −8m2
τ [(pe · pντ )(pν̄e · pB̃) − (pe · pB̃)(pν̄e · pντ )]

(153)

⋆と ⋆⋆の実部と虚部の積は０になるので、最終的に | M１ |2は以下のようになる：

　 | M１ |2= (
−1
m2

W

1
p2

τ − m2
τ

)2m2
τ (pe · pB̃)(pν̄e · pντ ) (154)

振幅M２についても同様に計算すると次式が得られる：

　M２ =
−1
m2

W

1
p2

τ − m2
τ

ūs(pe)γµPLvt(pν̄e)ū
u(pντ )γνgµν /pτPRvr(pB̃)

M２
∗ =

−1
m2

W

1
p2

τ − m2
τ

v̄r(pB̃)PL /pτgµνγ
νuu(pντ )v̄t(pν̄e)PRγµus(pe)

(155)

これらを使って振幅の二乗 | M |2=| M１ + M２ |2を求める：

　 | M |2 = (M１ + M２)(M１
∗ + M２

∗)

=| M１ |2 + | M２ |2 +M１M２
∗ + M２M１

∗

| M２ |2 = (
−1
m2

W

1
p2

τ − m2
τ

)2[2(pe · pτ )(pB̃ · pτ ) − (pτ̃ − pB̃)2(pe · pB̃)](pντ · pν̄e)

M１M２
∗ = (

−1
m2

W

1
p2

τ − m2
τ

)2[ūs(pe)γµPLvt(pν̄e)ūu(pντ )γνgµνmτPLvr(pB̃)]

× [v̄r(pB̃)PL /pτgρσγσuu(pντ )v̄t(pν̄e)PRγρus(pe)]

= (
−1
m2

W

1
p2

τ − m2
τ

)2[ūs(pe)γµPLvt(pν̄e)v̄t(pν̄e)PRγρus(pe)]

× [ūu(pντ )γνgµνmτPLvr(pB̃)v̄r(pB̃)PL/pτgρσγσuu(pντ )]

= (
−1
m2

W

1
p2

τ − m2
τ

)2mτ tr[(/pe + me)γµPL/pν̄e
PRγρ]

× tr[/pντ
γµPL(/pB̃ − mB̃)PL /P τγρ]

(156)

（155）の最後に出てくる traceの一つ目を⊗、二つ目を⊗⊗とする。これらを一つずつ
計算していく、計算の際 tr[any odd number of γ s]=0となることを用いると以下のよう

になる：
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　⊗ ⇒ tr[(/pe + me)γµPL/pν̄e
PRγρ] =

1
2
tr[(/pe + me)γµ/pν̄e

γρ(1 − γ5)]

=
1
2
pexpν̄eytr[γxγµγyγρ(1 − γ5)]

=
1
2
4pexpν̄ey(gxµgyρ − gxygµρ + gxρgµy + iϵxµyρ)

= 2(pµ
e pρ

ν̄e
− (pe · pν̄e)g

µρ + pρ
ep

µ
ν̄e

+ ipexpν̄eyϵ
xµyρ)

⊗⊗ ⇒ tr[/pντ
γµPL(/pB̃ − mB̃)PL /P τγρ] = −1

2
mB̃tr[/pντ

γµ /P τγρ(1 − γ5)]

= −1
2
mB̃pα

ντ
pγ

τ tr[γαγµγγγρ(1 − γ5)]

= −2mB̃pα
ντ

pγ
τ (gαµgγρ + gαρgµγ − gαγgµρ − iϵαµγρ)

= −2mB̃(pντ µpτρ + pντ ρpτµ − (pντ · pτ )gµρ − ipα
ντ

pγ
τ ϵαµγρ)

(157)

⊗ と⊗⊗ の実部同士の積と虚部同士の積：

　Re(⊗) × Re(⊗⊗) = −4mB̃[pµ
e pρ

ν̄e
− (pe · pν̄e)g

µρ + pρ
ep

µ
ν̄e

]

× [pντ µpτρ + pντ ρpτµ − (pντ · pτ )gµρ]

= −8mB̃[(pe · pντ )(pν̄e · pτ ) + (pe · pτ )(pν̄e · pντ )]

Im(⊗) × Im(⊗⊗) = −4mB̃pα
ντ

pγ
τpexpν̄eyϵαµγρϵ

xµyρ

= −4mB̃pα
ντ

pγ
τpexpν̄ey(−2)(δx

αδy
γ − δy

αδx
γ )

= 8mB̃[(pe · pντ )(pν̄e · pτ ) − (pe · pτ )(pν̄e · pντ )]

(158)

この結果と、[（⊗の実部）× （⊗⊗ の虚部） ]+[（⊗の虚部）× （⊗⊗ の実部）]=0と

なることを用いると、結局以下の結果が得られる：

M１M２
∗ = (

−1
m2

W

1
p2

τ − m2
τ

)2mτ [−16mB̃(pe · pτ )(pν̄e · pντ )]

= −(
−1
m2

W

4
p2

τ − m2
τ

)2mτmB̃(pe · pτ )(pν̄e · pντ )
(159)

M２M１
∗についても同様に計算していくとM１M２

∗の結果と全く同じになることが

分かる：

　M２M１
∗ = −(

−1
m2

W

4
p2

τ − m2
τ

)2mτmB̃(pe · pτ )(pν̄e · pντ ) (160)

したがって、これらの結果を全て用いると | M |2は次式のように得られる：
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　 | M |2 =| M１ |2 + | M２ |2 +M１M２
∗ + M２M１

∗

= (
−1
m2

W

4
p2

τ − m2
τ

)2
1
4
[g†2R g4

2m
2
τ (pe · pB̃)(pντ · pν̄e)

+ g2
Lg4

2[(2(pe · pτ )(pB̃ · pτ ) − (pτ̃ − pB̃)2(pe · pB̃))(pντ · pν̄e)]

− 2gLg†Rg4
2mτmB̃(pe · pτ )(pντ · pν̄e)

= (
2g2

2

m2
W (p2

τ − m2
τ )

)2[g†2R m2
τ (pe · pB̃) − 2gLg†RmτmB̃(pe · pτ )

+ g2
L[2(pe · pτ )(pB̃ · pτ ) − (pτ̃ − pB̃)2(pe · pB̃)]](pντ · pν̄e)

(161)

微分崩壊率は振幅の二乗を用いて以下のように表される：

　 dΓ =
1

2mτ̃

d3pe

(2π)32EB̃

d3pe

(2π)32Ee

d3pντ

(2π)32Eντ

d3pν̄e

(2π)32Eν̄e

× | M |2 (2π)4δ(4)(pτ̃ − pB̃ − pe − pντ − pν̄e)
(162)

dΓ についてまずは終状態の neutrino ν̄e、ντ についての積分を実行する：

　
dΓ

d3pe

(2π)32EB̃

d3pe

(2π)32Ee

=
1

2mτ̃
(

2g2
2

m2
W (p2

τ − m2
τ )

)2(2π)4[g†2R m2
τ (pe · pB̃) − 2gLg†RmτmB̃(pe · pτ )

+ g2
L[2(pe · pτ )(pB̃ · pτ ) − (pτ̃ − pB̃)2(pe · pB̃)]

×
∫

d3pντ

(2π)32Eντ

d3pν̄e

(2π)32Eν̄e

(pντ · pν̄e)δ
(4)(q − pντ − pν̄e)

q = pτ̃ − pB̃ − pe

(163)

（162）の中の積分を (pν̄e · pντ ) = 1
2q2であることを用いて計算する：

　
∫

d3pντ

(2π)32Eντ

d3pν̄e

(2π)32Eν̄e

(pντ · pν̄e)δ
(4)(q − pντ − pν̄e)　

=
q2

2

∫
d3pντ

(2π)32Eντ

d3pν̄e

(2π)32Eν̄e

δ(4)(q − pν̄e − pντ )
(164)

この積分はローレンツ不変積分であるから、もともと考えていた系は stauの静止系であっ

たが、この積分の実行時にはどんな慣性系に移して実行してもよい。よって、この積分は

electron-neutrinoと tau-neutrinoの重心系で実行する。

electron-neutrinoと tau-neutrinoの重心系であれば pν̄e = −pντ、また neutrinoの質量が

0であることよりEν̄e = Eντ となることを考慮すると、（163）の積分は以下のようになる：
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q2

2

∫
d3pντ

(2π)32Eντ

d3pν̄e

(2π)32Eν̄e

δ(4)(q − pν̄e − pντ )　

=
q2

2
1

4(2π)6

∫
d3pν̄e

1
Eν̄eEντ

δ(q0 − Eν̄e − Eντ )

=
q2

2
1

4(2π)6

∫
dΩ

∫
d | pν̄e | | pν̄e |2

E2
ν̄e

δ(q0 − 2Eν̄e)

=
q2

2
1

4(2π)6
(4π)

1
2

=
q2

2
1

4(2π)5

(165)

したがって次式が得られる：

　
dΓ

d3pe

(2π)32EB̃

d3pe

(2π)32Ee

=
1

2mτ̃
(

2g2
2

m2
W (p2

τ − m2
τ )

)2(2π)4
1
2

1
4(2π)5

[g†2R m2
τ (pe · pB̃)

− 2gLg†RmτmB̃(pe · pτ ) + g2
L[2(pe · pτ )(pB̃ · pτ ) − (pτ̃ − pB̃)2(pe · pB̃)]]q2

(166)

これをまずは electronの終状態について積分をしていくのだが、electronの運動量に角

度依存性が入らないようにするために、この積分を stauの静止系から tauの静止系に移し

て実行する。以下に計算で用いる tauの静止系での量を示す（ただし、binoの放出方向を

軸にとり、binoと electronの放出方向の間の角度を θとする ）：

　 q2 = (pτ̃ − pB̃ − pe)2

= m2
τ̃ + m2

B̃
+ m2

e − 2pτ̃ · pB̃ − 2(Eτ̃Ee − p⃗τ̃ · p⃗e) + 2(EB̃Ee − p⃗B̃ · p⃗e)

= m2
τ̃ + m2

B̃
+ m2

e − 2pτ̃ · pB̃ − 2Eτ̃Ee + 2EB̃Ee

pe · pτ = pe · (pτ̃ − pB̃)

= Eτ̃Ee − EB̃Ee

(167)

ただし計算途中で、tauの静止系では p⃗τ̃ = p⃗B̃ となることを用いた。
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これを用いると（165）の [～]q2は以下のようになる：

[g†2R m2
τ (pe · pB̃) − 2gLg†RmτmB̃(pe · pτ ) + g2

L[2(pe · pτ )(pB̃ · pτ ) − (pτ̃ − pB̃)2(pe · pB̃)]]q2

= [g†2R m2
τ (EB̃Ee − p⃗e · p⃗B̃) − 2gLg†RmτmB̃(Eτ̃Ee − EB̃Ee)

+ g2
L[(Eτ̃Ee − EB̃Ee)(pB̃ · pτ ) − (pτ̃ − pB̃)2(EB̃Ee − p⃗e · p⃗B̃)]]

× [m2
τ̃ + m2

B̃
+ m2

e − 2pτ̃ · pB̃ − 2Eτ̃Ee + 2EB̃Ee]

= [g†2R m2
τ (m

2
τ̃ + m2

B̃
+ m2

e − 2pτ̃ · pB̃)EB̃ − 2gLg†RmτmB̃(m2
τ̃ + m2

B̃
+ m2

e − 2pτ̃ · pB̃)(Eτ̃ − EB̃)

+ g2
L(m2

τ̃ + m2
B̃

+ m2
e − 2pτ̃ · pB̃)(pB̃ · pτ )(Eτ̃ − EB̃) − g2

L(m2
τ̃ + m2

B̃
+ m2

e − 2pτ̃ · pB̃)(pτ̃ − pB̃)2EB̃]Ee

+ [−2g†2R m2
τEB̃(Eτ̃ − EB̃) + 4gLg†RmτmB̃(Eτ̃ − EB̃)2

− 2g2
L(pB̃ · pτ )(Eτ̃ − EB̃)2 + 2g2

L(pτ̃ − pB̃)2(Eτ̃ − EB̃)EB̃]E2
e

(168)

ただし binoと stauの重心系で考えると、binoの放出方向に対して electronは等方的に放

出されるので θの積分範囲は単純に 0～πとなり、この積分範囲で考えると、

　
∫

sinθcosθdθ =
1
2

∫
sin2θdθ = 0 (169)

となるので、cosθの一次の項は落として考えた。

ここで、electronの終状態について積分をするために、electronのエネルギー上限値を

求める。electronのエネルギーが最大値になるのは、electronの運動量が最大値になると

きであり、これは electronが中間状態の tauから electron neutrino、tau neutrinoと正反

対に出たときであり、このときに electronのエネルギーは上限値をとる。

以下では、pν̄e · pντ = 0であることを用いて、運動量保存則から electronのエネルギー

上限値を求める：

　 p2
τ = (pτ̃ − pB̃)2

= (pe + pν̄e + pντ )2

= m2
e + 2pe · (pν̄e + pντ ) + 2pν̄e · pντ

= m2
e + 2Ee(Eν̄e + Eντ ) − 2p⃗e · (p⃗ν̄e + p⃗ντ )　

= m2
e + 2Ee

√
E2

e − m2
e + 2(E2

e − m2
e)

(170)

ここで、4行目から 5行目にいく際にEν̄e +Eντ =| p⃗ν̄e | + | p⃗ντ |=| p⃗e |、p⃗ν̄e + p⃗ντ = −p⃗e

であることを用いた。この（169）の両辺を二乗すると以下のようになる：

　 4E2
e (E2

e − m2
e) = (p2

τ + m2
e − 2E2

e )2

= p4
τ + m4

e + 4E4
e + 2m2

ep
2
τ − 4p2

τE
2
e − 4m2

eE
2
e

(171)

したがって、electronのエネルギー上限値 (Ee)maxとして次式が得られる：

　 (Ee)max =
p2

τ + m2
e

2
√

p2
τ

　 (172)
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今求めた積分上限値と積分下限値me を用いると、electronの終状態について積分は次の

ようになる：

∫
Eed

3pe

(2π)32Ee
=

1
2(2π)3

∫
dΩ

∫
| p⃗e |2 d | p⃗e |

=
1

(2π)2

∫ (Ee)max

me

Ee

√
E2

e − m2
edEe

=
1

(2π)2
1
3
[(E2

e − m2
e)

3
2 ](Ee)max

me

=
1

(2π)2
1
3
[(Ee)2max − m2

e]
3
2∫

E2
ed3pe

(2π)32Ee
=

1
2(2π)3

∫
dΩ

∫
Ee | p⃗e |2 d | p⃗e |

=
1

(2π)2

∫ (Ee)max

me

Ee

√
E2

e − m2
edEe

=
1

(2π)2
1
8
[Ee(2E2

e − m2
e) − m4

elog[Ee +
√

E2
e − m2

e]
(Ee)max
me

=
1

(2π)2
1
8
[(Ee)max(2(Ee)2max − m2

e)
√

(Ee)2max − m2
e

− m4
elog[(Ee)max +

√
(Ee)2max − m2

e] + m4
elog[me]]

(173)

本来求めたいものは stauの静止系での stauの寿命である。したがって、（172）の結果

と（167）を（165）に代入し、stauの静止系にブーストして binoの終状態について積分を

実行する。tauの静止系でのエネルギーをE∗
B̃
、stauの静止系でのエネルギーをEB̃とする

と、系のローレンツ変換により以下のような関係が成り立つ：

　E∗
B̃

=
mτ̃EB̃ − m2

B̃√
m2

τ̃ + m2
B̃
− 2mτ̃EB̃

(174)

この変換によって stauの静止系では様々な物理量が以下のようになる：

　E∗
τ̃ − E∗

B̃
= (m2

τ̃ + m2
B̃
− 2mτ̃EB̃)

1
2

(Ee)max =
1
2
(m2

τ̃ + m2
B̃
− 2mτ̃EB̃)−

1
2 (m2

τ̃ + m2
B̃

+ m2
e − 2mτ̃EB̃)

pτ̃ · pB̃ = mτ̃EB̃

pB̃ · pτ = mτ̃EB̃ − m2
B̃

p2
τ = (pτ̃ − pB̃)2

= m2
τ̃ + m2

B̃
− 2mτ̃EB̃

(175)
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したがって、最終的に decayrateは次式で表される：

　Γ =
g4
2

4mτ̃m4
W (2π)5

∫ m2
τ̃ +m2

B̃
−m2

e

2mτ̃

mB̃

dEB̃

√
E2

B̃
− m2

B̃

[m2
τ̃ + m2

B̃
− m2

τ − 2mτ̃EB̃]2

× [| gR |2 (mτ̃EB̃ − m2
B̃

)(m2
τ̃ + m2

B̃
− 2mτ̃EB̃)−1 − 2gLg†RmB̃mτ + g2

L(mτ̃EB̃ − m2
B̃

)]

× [[
1
24

(m2
τ̃ + m2

B̃
− 2mτ̃EB̃)−1(m2

τ̃ + m2
B̃

+ m2
e − 2mτ̃EB̃)(m2

τ̃ + m2
B̃
− m2

e − 2mτ̃EB̃)3]

+ [− 1
32

(m2
τ̃ + m2

B̃
− 2mτ̃EB̃)−1(m2

τ̃ + m2
B̃

+ m2
e − 2mτ̃EB̃)3(m2

τ̃ + m2
B̃
− m2

e − 2mτ̃EB̃)

+
1
16

m2
e(m

2
τ̃ + m2

B̃
+ m2

e − 2mτ̃EB̃)(m2
τ̃ + m2

B̃
− m2

e − 2mτ̃EB̃)

+
1
4
m4

e(m
2
τ̃ + m2

B̃
− 2mτ̃EB̃)log[

(m2
τ̃ + m2

B̃
− 2mτ̃EB̃)1/2

me
]]]

(176)

あとはこれを数値的に積分することにより stauの decay rate、寿命を求めることが出来

る。その数値積分の際に注意すべきことがある；それは tauのプロパゲーターの扱いであ

る。δm < mτ の場合は (175)式のプロパゲーターのままで何も問題はない。問題となるの

は δm > mτ の場合に４体崩壊の decay rateを計算するときに生じる。プロパゲーターの

表式を思い出せば明らかなことであるが、積分の際に p2
τ = m2

τ となる点において特異点が

現れ、decay rateが発散してしまうのである。この発散を避けるため、一般的には、プロ

パゲーターを以下のように置き換えるという手法が用いられる：

　
1

(p2
τ − m2

τ )2
=⇒ 1

(p2
τ − m2

τ )2 + m2
τΓ2

τ
(177)

ここで Γτ は tauの total widthである。これにより特異点の出現は避けることは出来るが、

p2
τ = m2

τ となる点の近傍においてはかなり鋭いピークが現れ、このままでは数値積分の際

に数値精度が悪くなってしまう。したがって、(175)式に (176)式を代入して数値積分する

だけではあまり精度の良くない結果しか得られない。そのため、数値積分する前に (175)

式において変数変換などを施し、計算に現れる数値の幅を少しでも狭くしてから積分を実

行するべきである。さらに、置き換えたプロパゲーターもうまく式変形をして、ピークの

高さを出来る限り低くしてから用いるべきである。

この結果を用いた stauの寿命に関する議論は、３体崩壊の結果と合わせて、サブセク

ション 5.5において行う。

5.4 三体崩壊

このサブセクションでは３体崩壊 [(141)式]の decay rateを求めていく。計算の流れは

２体崩壊、４体崩壊の decay rate導出と全く同じであるので、ここでは要点と結果のみを
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簡潔に記していく。用いるラグランジアンは次式で与えられる：

L = L１ + L4　

L１ = τ̃∗ ¯̃BG̃τ + τ̄ G̃́ B̃τ̃

= g†Rτ̄PLB̃τ̃ + gLτ̄PRB̃τ̃

L4 =
1√
2
GντγµPLτJµ

(178)

ここで、Gは 4-フェルミ相互作用の結合定数であり、Jµは pionの生成・消滅を記述する

カレントであり、状態に作用させると以下のようになるものとする：

　 < π−(pπ) | Jµ | 0 > = −i
√

2fπcosθcp
µ
π

= gπpµ
π

(179)

ただし、fπは pionの崩壊定数、θcはカビボ角を表わしている。これらを用いて、前と同様

に計算していくと、今考えている３体崩壊 [(141)式]の振幅 | M |2は次のように得られる：

　 | M |2 =
G2 | gπ |2

(p2
τ − m2

τ )
[g2

L[4(pB̃ · pτ )(pπ · pντ )(pπ · pτ ) − 2m2
π(pB̃ · pτ )(pντ · pτ )

− 2p2
τ (pB̃ · pπ)(pπ · pντ ) + m2

πp2
τ (pB̃ · pντ )]

− Re[gLgR] · 2mB̃mτ [2(pπ · pντ )(pπ · pτ ) − m2
π(pντ · pτ )]

+ | gR |2 m2
τ [2(pπ · pντ )(pB̃ · pπ) − m2

π(pB̃ · pντ )]]

(180)

あとは今得られた振幅を終状態位相空間について積分すれば decay rateを求めることが出

来る：

　Γ =
1

2mτ̃

∫
d3pB̃

(2π)32EB̃

d3pπ

(2π)32Eπ

d3pντ

(2π)32Eντ

× | M |2 (2π)4δ(4)(pτ̃ − pB̃ − pπ − pντ )

(181)

各積分ごとにうまく座標系を選びながら積分を実行していくと、最終的に３体崩壊のdecay

rateとして次式が得られる：

　Γ =
G2 | gπ |2

32π3mτ̃

∫ m2
τ̃ +m2

B̃
−m2

π

m
B̃

mB̃

dEB̃

√
E2

B̃
− m2

B̃

(m2
τ̃ + m2

B̃
− m2

τ − 2mτ̃EB̃)2

× [
1
4
g2
L[−(m2

τ̃ + m2
B̃
− 2mτ̃EB̃)3 + (m2

τ̃ − m2
B̃

+ m2
π)(m2

τ̃ + m2
B̃
− m2

π)2

− m2
π(m2

τ̃ − m2
B̃

+ m2
π)(m2

τ̃ + m2
B̃
− 2mτ̃EB̃)]

− Re[gLgR]mB̃mτ ((m2
τ̃ + m2

B̃
− 2mτ̃EB̃)2 − m2

π(m2
τ̃ + m2

B̃
− 2mτ̃EB̃))

+ | gR |2 1
4
m2

τ [−(m2
τ̃ + m2

B̃
− 2mτ̃EB̃)2 + (m2

τ̃ − mB̃ + m2
π)(m2

τ̃ + m2
B̃
− 2mτ̃EB̃) − m2

π(m2
τ − mB̃)]]

(182)

これを数値積分すれば具体的に decay rateや寿命が得られるのだが、その際にも前のサ

ブセクションで注意したようにプロパゲーターから特異点が出ないようにしなくてはなら

ない。そのための手法は４体崩壊の場合と全く同じである。得られる数値結果についての

議論は４体崩壊の場合と合わせて次のサブセクションで行う。
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5.5 stau lifetimeのパラメーター依存性

上で求めてきた各モードの decay rateはいくつかのパラメーターを決めることでその値

が定まる。特に重要なのは、サブセクション 5.1でも述べたように、stauと binoの質量差

δmである。このサブセクションでは、パラメーター変化により stauの寿命にどのような

影響が与えられるかについて調べていき、そこから得られる結果をまとめていく。

まずは、bino mass mB̃ 依存性についてを調べていく。前のセクションで調べた coan-

nihilation processを考慮した場合には、観測による制限 0.094 ≤ ΩDMh2 ≤ 0.129 に対応

する bino（正確には neutrlino）LSP massの制限が以下のようになることが知られている

[Ref[5]]:

200GeV ≤ mB̃ ≤ 600GeV (183)

(138)式、(175)式、(181)式において分母のmτ̃ をmτ̃ → δm + mB̃ と置き換え、δmが

mB̃ に比べて小さいという事に注意すると、stauの寿命は大雑把に考えてmB̃ に比例して

いると見なすことが出来る。すなわち、この事と上のmassの制限とを合わせて考えると、

bino mass mB̃ は stauの寿命をオーダーで変えるようなことは無い、という結果が得られ

る。よって以後の解析、グラフにおいては bino mass mB̃ は 300GeVに固定して扱うこと

にする。

次に、stauの寿命に対するCP violating phase γτ の依存性について見ていく。mB̃= 300

GeV、δm = 0.5 GeV、θτ = π/3にパラメーターを取った場合の γτ と stauの寿命との関

係を図 13に示す：図から明らかなように、mB̃ と同様に γτ も stauの寿命に対してほとん

ど影響を与えない。よって、この先の解析では γτ = 0と固定する。

ここから、この研究のメインともいうべきパラメーター δmが stauの寿命に対してどう

依存しているのかを調べていく。前のセクションでも論じたように、coannihilationが relic

abundanceに大きく影響するには、δm/mB̃ ∼数％でなくてはならない。このような制限
範囲内で stauの寿命がどう変化するかを図 14に示す：図において各パラメーターはmB̃

= 300GeV、θτ = π/3、γτ = 0としてある。またグラフの横軸は δm(GeV )にとってある。

図 14には、上で求めた decay rateを全て足し合わせて得られる寿命と共に、各モードの

decay rateから得られる寿命も示してある。異なる線種を見比べることにより、各領域に

おいて支配的になっている崩壊モードが何であるかが読み取れる。図における tau mass以

下の領域に注目すると、stauの寿命が 10−6 ∼ 1010ほどになっており、これならばこの研

究で目標としている stauの捕獲と収集が出来るであろうと思われる。

stauの寿命に対する δm依存性についてより定量的に解析していく。この解析は Ref[6]

に基づいて行う。簡単化のため、stauが binoとマスレス粒子に decayする場合を考える。

decay rateの δm依存性を決定するのは位相空間と振幅 | M |2である。n体崩壊の場合、

今のように終状態が１つの粒子以外はマスレス粒子であるとすると、一般的に位相空間の

δm依存性は次のように表わされる：

∝ (δm)2(n−2)+1 (184)
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図 13: stauの寿命に対する CP violating phase γτ の依存性（Ref[20]より引用）
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図 14: stauの寿命に対する質量差 δmの依存性（グラフの横軸は δm(GeV )）（Ref[20]よ

り引用）
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また、１つの粒子以外がマスレスのフェルミオンである場合、フェルミオンの運動量は振

幅に線形で依存するため、δm依存性は以下のようになる：

| M |2∝ (δm)n−1 (185)

一方、binoの他に１つの pion(NG-boson)、あとは (n-2)個のマスレスのフェルミオンが終

状態である場合は、pion の運動量は振幅に二乗の形で依存するため、δm依存性として次

式が得られる：

| M |2∝ (δm)n (186)

最終的にこれらをまとめて考えると２体、３体、４体崩壊の decay rateは以下のような δm

依存性をもつことになる：

Γ2−body ∝ (δm)2

Γ3−body ∝ (δm)6

Γ4−body ∝ (δm)8
(187)

終状態の粒子がマスレスではない、より一般的な場合で考えると、それぞれの decay rate

の δm依存性は

Γ2−body ∝ (δm)((δm)2 − m2
τ )

1/2

Γ3−body ∝ (δm)((δm)2 − m2
π)5/2

Γ4−body ∝ (δm)3((δm)2 − m2
µ(e))

5/2

(188)

となる。これは上で求めてきた各 decay rate[(138)、(175)、(181)式]を、各崩壊モードの

thresholdから離れたところで近似していくことで得られる。

最後に、stauの寿命に対する stauの混合角 θτ の依存性について議論していく。図 15、

16に、mB̃ = 300GeV、γτ = 0と固定して θτ（横軸）の関数として stauの寿命を示す：

図 15は δm = 2GeV、図 16は δm = 0.2GeVの場合である。これら２つの図を見比べれ

ば明らかなように、δmが小さくなるにしたがって θτ による寿命の変化は大きくなる。ま

た、δmが小さくなるほどピークの位置は θτ = 0に近づき、形は鋭くなっていくことが分

かる。これらは全てニュートリノが左巻きの tauとのみ相互作用することが原因となって

いる。プロパゲーターにおいて τ̃Rはmτ の項を通して τLと結合するのに対して、τ̃Lは pτ

の項を通して τLと結合する。このときに pτ ∼ δm ≪ mτ であれば、τ̃Rによる寄与が支配

的になり、その結果として上の図のような大きな依存形の違いが現れることになる。
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図 15: stauの寿命に対する stauの混合角 θτ の依存性（δm = 2GeV）（Ref[20]より引用）
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図 16: stauの寿命に対する stauの混合角 θτ の依存性（δm = 0.2GeV）（Ref[20]より引用）
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6 summary

本論文では、標準宇宙論を土台にし、観測により得られる数々の dark matter存在の証

拠、またそれに基づき予測される様々な dark matterの候補について論じてきた。その際、

数々の観測事実と超対称性理論におけるR-parityの保存とを考慮すると、超対称性粒子の

１つである neutralinoが dark matterの有力候補になりえるということを見た。また、素粒

子的 dark matterを考えるうえで重要となる relic density計算の基本形についてを取り上

げた。さらに、relic density計算において特別な扱いが必要となる 3つのケースについて議

論し、その 3つのケースを考慮した際の relic densityの大幅な変化を調べた。その特別の場

合の１つである coannihilation caseに注目し、dark matterとして neutralino LSP、NLSP

として stauを考えて加速器における物理に関連する研究を行った。具体的には、neutralino

LSPと NLSP stauとの質量差が非常に小さい質量領域においては、stauの崩壊モードが

かなり限定されることにより stauが超長寿命化しえる、というものであった。この超長寿

命化によって将来の加速器において生成された stauの大型 detectorによる収集が可能に

なり、収集後の stauを利用して超対称性理論や SQS-decay（Ref[21]）の研究進歩が予測さ

れる。

今後の研究においては、セクション 3.7において述べた 511KeVの γ-ray line emission

に注目する。これに関連した特殊な状況下における反応を考慮した relic abundance計算、

またその結果から候補として考えられる dark matterについての研究を行っていく予定で

ある。
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A ボルツマン方程式

　非平衡系においては、粒子の分布状態を記述する分布関数はボルツマン方程式を解く

ことにより求められる。ここからこのボルツマン方程式の導出についてを見ていく。

A.1 導出のための予備知識

　粒子の運動を統計的に扱うために、ある粒子種について位相空間中の分布関数 f(x, p)

を考える。ここで (x, p)は 8次元位相空間内の座標を表している。通常の 4次元時空の不

変体積要素は
√
−gd4x、運動量空間の不変体積要素は

√
−gd4pとなることより、今考えて

いる 8次元位相空間の不変体積要素は (−g)d4xd4pとなる。粒子のエネルギー p0 ≥ 0と粒

子の on-shell条件を考慮して、運動量空間の不変運動量要素として次式を定義する：

dΠ ≡ (2π)−3√−gd4pθ(p0)δ(p2 − m2) (189)

　　　　　　　　　 θ(x)：階段関数

この dΠは局所ミンコフスキー空間におけるローレンツスカラーである。これをデルタ関

数の性質を用いて式変形していくと以下のようになる：

dΠ = (2π)−3d4pθ(p0)δ[(p0)2− | p⃗ |2 −m2]

=
d4p

2(2π)3p0
δ(p0 −

√
| p⃗ |2 +m2)

=
d3p

2(2π)3
√

| p⃗ |2 +m2

=
d3p

(2π)32p0

(190)

左辺はローレンツスカラーであるので、当然右辺も局所ミンコフスキー空間におけるロー

レンツスカラーとなる。

局所ミンコフスキー空間では、分布関数を運動量で積分すれば個数密度 n(x⃗, t)になるの

は明らかである：

n(x⃗, t) =
∫

d3p

(2π)3
f(x, p)dx

= 2
∫

dΠp0f(x, p)
(191)

ここで式変形では (189)式を用いた、式変形後の表式は一般座標での個数密度 n(x⃗, t)を表

している。この一般座標での個数密度 n(x⃗, t)の表式を第０成分とする 4元ベクトルを粒子

4元流束といい、次式で定義される：

Nµ(x) = 2
∫

dΠpµf(x, p)

= (n, j⃗)
(192)
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この j⃗を局所ミンコフスキー空間で書き表すと次のように書ける：

j⃗(x⃗, t) =
∫

d3p

(2π)3
p⃗

p0
f(x, p) (193)

この p⃗/p0という量は粒子の 3元速度であるから、⃗j(x⃗, t)は粒子の平均的な空間方向の流れ

を表わす量になっている。すなわち、Nµは粒子の個数密度と空間方向の平均速度から作

られるベクトル量、ということになる。

A.2 リュービルの定理

　粒子が重力のみの影響を受けて運動する場合、その軌跡は以下の測地線の方程式に

従う：

dpµ

dλ
+Γµ

νλpνpλ = 0

pµ =
dxµ

dλ

(194)

ここで λはアフィンパラメーターであり、これは粒子に massがある場合は粒子に沿った

固有時間をmassで割ったものとなる。

この先では、リュービルの定理導出のための準備として、不変体積要素 dΩ = (−g)d4xd4p

が粒子の測地線に沿って不変となることを示していく。以下ではその際に使ういくつかの

関係式等を求めていく。アフィンパラメーター λが δλだけ変化すると、粒子の位相空間中

での座標は以下のように変化する：

x
′µ = xµ + δxµ

= xµ +
dxµ

dλ
δλ

= xµ + pµδλ

p
′µ = pµ + δpµ

= pµ +
dpµ

dλ
δλ

= pµ − Γµ
νλpνpλδλ

(195)

xµ → x
′µ、pµ → p

′µに対応するヤコビアン J：

J =

∣∣∣∣∣∂x
′µ/∂xα ∂p

′µ/∂xα

∂x
′µ/∂pβ ∂p

′ν/∂pβ

∣∣∣∣∣
=

∣∣∣∣∣ δµ
α 0

δµ
βδλ δν

β − 2Γν
βλpλδλ

∣∣∣∣∣
= 1 − 2Γµ

µνp
νδλ

= 1 − gµνgνµ,λδxλ

= 1 − δg

g

(196)
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ただし、上のヤコビアン J 計算において以下の式を用いた：

g = det(gµν)

dg = ggµνdgµν

Γµ
λν =

1
2
gµρ(gρλ,ν + gρν,λ − gλν,ρ)

(197)

これらを用いて不変体積要素 dΩの微小変化分を計算すると

δ(dΩ) = −g · δ(d4xd4p) − (δg)d4xd4p

= −g(d4x
′
d4p

′ − d4xd4p) − (δg)d4xd4p

= −g(Jd4xd4p − d4xd4p) − (δg)d4xd4p

= −g(−δg

g
d4xd4p) − (δg)d4xd4p

= 0

(198)

となり、確かに 8次元位相空間の不変体積要素は測地線に沿って不変となることが確かめ

られた。

次に、不変体積要素 dΩ = (−g)d4xd4pを書きかえる、そのためにまずは座標空間の不変

体積
√
−gd4xを書き換えていく。この不変体積

√
−gd4xは、dV を空間部分の 3次元不変

体積、dnを dV に垂直な方向を向いた単位長さ時間的間隔分とすると、次のように書き表

わせる：

√
−gd4x = dV dn (199)

また、粒子の世界線がこの微小体積中と交わる長さと同じ長さをもつ、粒子の世界線に沿っ

た方向を持つベクトル dxµと、単位ベクトル nµを以下のように定義する：

dxµ = (dn, dx, dy, dz)

nµ = (1, 0, 0, 0)
(200)

これらを用いると座標空間の不変体積
√
−gd4xは

√
−gd4x = dV dn

= dV (nµdxµ)

= (nµpµ)dV dλ

(201)

と書ける。今求めた式の両辺に運動量空間の不変運動量要素 dΠ[(188)式]を掛ける：

dΠ
√
−gd4x = (nµpµ)dV dΠdλ (202)

前の方で示した通り、8次元位相空間の不変体積要素は測地線に沿って不変となるので、当

然、(201)式の両辺も粒子の測地線に沿って一定となる。ここまでの結果と dλ =一定を使

うと、結論として以下のリュービルの定理が導かれる：

『粒子の運動に沿ってとった次の量は一定である』

(nµpµ)dV dΠ = const (203)

73



A.3 ボルツマン方程式

　ここでは、上で求めたリュービルの定理を用いていよいよボルツマン方程式を導出し

ていく。まず、ある時刻に座標空間微小体積 dVを横切る粒子のうち、運動量が dΠの範囲

にあるものの数を dN と定義する。微小体積 dV dΠ中にある粒子 4元流束を

dNµ = pµf(x, p)dV dΠ (204)

と書くことにすると、粒子数 dNはこの 4元流束の nµ方向の成分により与えられる：

dN = nµdNµ

= (nµpµ)f(x, p)dV dΠ
(205)

この表式とリュービルの定理を使って、粒子の測地線に沿っての dN の変化を調べる：

δ(dN) = (δf(x, p))nµpµdV dΠ + f(x, p)δ((nµpµ)dV dΠ)

= (
∂xµ

∂λ

∂f

∂xµ
+

∂pµ

∂λ

∂f

∂pµ
)δλ(nµpµ)dV dΠ + 0

= (pµ ∂f

∂xµ
− Γµ

νλpνpλ ∂f

∂pµ
)δλ(nµpµ)dV dΠ

(206)

粒子に重力以外の相互作用が働かない場合は粒子数 dN は粒子の測地線に沿って一定とな

るので、δ(dN) = 0となる。このことと (205)式とを合わせて考えると次の方程式が成り

立つことになる：

pµ ∂f

∂xµ
− Γµ

νλpνpλ ∂f

∂pµ
= 0 (207)

この方程式のことをリュービル方程式、または無衝突ボルツマン方程式という。

粒子の相互作用により dN が変化する場合、粒子の運動に沿ってその変化率を以下のよ

うに書くことにする：

C[f ](nµpµ)dV dΠ (208)

このC[f ]は衝突項と呼ばれるものであり、粒子の相互作用の詳細により形が決まる。これ

を用いると、より一般的なボルツマン方程式が次式のように書ける：

pµ ∂f

∂xµ
− Γµ

νλpνpλ ∂f

∂pµ
= C[f ] (209)

A.4 短距離相互作用による衝突項

　衝突項 C[f ]について考えていく際に以下のような仮定をつける：

• 長距離力としては重力のみが作用

• 短距離力は粒子同士の衝突や生成消滅過程として瞬間的に作用するものと近似

74



また以下のように演算子とそれが満たす関係式を定義する：

　　　　 a†i =⇒運動量 p⃗i、スピン σiをもつ粒子 iの生成演算子

　　　　 ai =⇒ 運動量 p⃗i、スピン σiをもつ粒子 iの消滅演算子

[ai, a
†
j ]± = δij

[ai, aj ]± = [a†i , a
†
j ]± = 0

(210)

ただし

　　　　　　　　 [a, b]+ = ab + ba for fermion

　　　　　　　　 [a, b]− = ab − ba for boson

これらの演算子を用いると、粒子 iが ni個ずつあるような状態は次のように書くことがで

きる：

| n1, n2, ... >=
1√

n1!n2!...
a†1a

†
2... | 0 > (211)

この状態に生成、消滅演算子を作用させると以下のようになる：

ai | n1, .., ni, .. > =
√

ni | n1, .., ni − 1, .. >

a†i | n1, .., ni, .. > =
√

1 ∓ ni | n1, .., ni + 1, .. >
(212)

以後、±,∓のような書き方をしたときは上の符号がフェルミオン、下の符号がボソンに対
応するように表記することにする。

ここから時空の小さな領域Dの中での以下のような衝突反応を考えていく：

i + j + ... −→ k + l + ... (213)

領域 Dは空間的超平面 Gと、それに垂直な時間間隔 Tからなるものとする。つまり、領

域Dの静止系での時間間隔はTとなる。また、領域Dの初期時刻は t=0とする。さらに、

領域Dは十分小さく、曲率のない平坦な空間であるとする。まずは、初期時刻における多

粒子系の状態ベクトルを次のように設定する：

| ψin >=| n1, .., ni, nj , ..nk, nl, ..; in > (214)

この状態を時刻 t=0から t=Tまで時間発展させると次のようになるとする：

| ψin >−→| ψin; T > (215)

衝突後の状態ベクトルは以下のように表わされる：

| ψout >=| n1, .., ni − 1, nj − 1, ..nk + 1, nl + 1, ..; out > (216)

相互作用のハミルトニアンとしてH = H0 + Hintを考えると、今考えている衝突が領域D

で起こる確率は散乱理論により、摂動一次近似で以下のようになる：

|< ψin;T | ψout >|2= Tδ(Ein − Eout) |< ψout | Hint | ψin >|2 (217)
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　　　　　Ein =⇒| ψin > の非摂動エネルギー固有値

　　　　　Eout =⇒| ψout >の非摂動エネルギー固有値

　　　　　 T =⇒領域Dの時間間隔

Hintはウィックの定理により正規順序積の和に展開されるので次式のように展開すること

ができる：

Hint = Σw(k, l, ...; i, j, ...)a†ka
†
l ...aiaj ... (218)

(210)～(217)より

|< ψin; T | ψout >|2 = Tδ(Ein − Eout) |< ψout | Hint | ψin >|2

= Tδ(Ein − Eout) | w(k, l, ...; i, j, ...) |2 ninj ...(1 ∓ nk)(1 ∓ nl)...

(219)

ここで、始状態において占められている粒子数 ni, nj , ..nk, nl, ..について座標空間に関し

ての統計平均をとれば、この反応が起きる確率を与えることになる。ところが、今考えて

いる反応は座標空間については領域Dで指定されており、運動量空間に関しては何も手を

加えていない状態になっている。このことは、個数密度 nは座標空間に関しての統計平均

をとったとしても、8次元位相空間の個数密度とはなりえず、領域Dにおける運動量空間

個数密度分布関数 f(p⃗)にまでしかなれない、という事を意味している。ここから先の議論

では、座標空間に関しての統計平均をとったとして、個数密度 nを運動量空間の分布関数

f(p⃗)にして考えていく。

さて、ボルツマン方程式の衝突項は、前のサブセクションで見たように、位相空間素片

dV dΠ中における粒子数のアフィンパラメーターあたりの変化を知ることにより得られる。

まずはそのための準備をしていく。不変運動量素片 dΠa(a = i, j, .., k, l, ..)で表わされる各

粒子の運動量空間における区間において、考えている反応が領域Dの中で単位時間あたり

に起こる回数の期待値を dN
′
とすると

dN
′
(i, j, .. −→ k, l, ..) = dV dΠidΠj ...dΠkdΠl...fifj ...

× (1 ∓ fk)(1 ∓ fl)...W (i, j, .. → k, l, ..)
(220)

と表わされる、ここでファクターW (i, j, .. → k, l, ..)の中には δ(Ein −Eout)などのファク

ターが全て吸収されている。ある粒子 aの運動に沿っての数の変化 dNaは反応後に不変位

相体積 (nµpµ
a)dV dΠaに入ってくる数と反応によりこの位相体積から出ていく数の差で与

えられる、すなわちこれは上の式を用いると以下のように表わされる：

dNa = (nµpµ
a)dΠa

×
∫

i,j,..,k,l,..
[dN

′
(i, j, .. → a, k, l, ..) − dN

′
(a, i, j, .. → k, l, ..)]

(221)
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これを (207)式と比べると、結局衝突項 C[f ]は次式のようになることが分かる：

C[f ] =
∫

dΠidΠj ...dΠkdΠl...

×[fifj ...(1 ∓ fa)(1 ∓ fk)(1 ∓ fl)...W (i, j, .. → a, k, l, ..)

− fafifj ...(1 ∓ fk)(1 ∓ fl)...W (a, i, j, .. → k, l, ..)]

(222)

一般的に場の理論において、反応 i+ j + ... −→ k+ l+ ...が起こる確率は不変振幅 | M |2

を用いて以下のように書ける：

dV
d3pk

(2π)32Ek

d3pl

(2π)32El
...

× (2π)4δ(4)(pi + pj + .. − pk − pl − ..) | M(i + j + .. → k + l + ..) |2
(223)

この式に始状態、終状態それぞれの運動量空間分布関数をかけて、始状態運動量に関して

積分をとれば考えている反応が領域Dの中で単位時間あたりに起こる回数の期待値になる、

それを (219)、(220)式と比較すれば、W (i, j, .. → k, l, ..)が次のように求められる：

W (i, j,.. → k, l, ..)

= (2π)4δ(4)(pi + pj + .. − pk − pl − ..) | M(i + j + .. → k + l + ..) |2
(224)

したがって、基本相互作用が与えられて不変振幅 | M |2が求まれば、衝突項 C[f ]が求め

られることになる。

A.5 ボルツマン方程式と熱平均化について

ここまでの結果から、注目する粒子をψで表わした場合の、反応ψ+a+b+... ←→ i+j+...

に対する衝突項付きボルツマン方程式は次式のように書けることが分かった：

pµ ∂fψ

∂xµ
− Γµ

νλpνpλ ∂fψ

∂pµ
=

∫
dΠadΠb...dΠidΠj ...

× (2π)4δ(4)(pψ + pa + pb.. − pi − pj − ..)

× [fafbfψ...(1 ∓ fi)(1 ∓ fj)... | M(ψ + a + b + .. → i + j + ..) |2

− fifj ...(1 ∓ fψ)(1 ∓ fa)(1 ∓ fb)... | M(i + j + .. → ψ + a + b + ..) |2]

(225)

宇宙の一様等方性を仮定し、フリードマン-ロバートソン-ウォーカーモデルで考えた場合

に non-zeroである成分は

Γi
jk =

1
2
hil(

∂hlj

∂xk
+

∂hlk

∂xj
−

∂hjk

∂xl
)

Γ0
ij =

Ṙ

R
hij

Γi
0j =

Ṙ

R
δi
j

(226)
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だけとなる。ここで hij = −gij である。これらを代入し、両辺を ψの運動量空間に関して

積分することにより、上のボルツマン方程式は結局次式で表わされることになる：

ṅψ + 3Hnψ =
∫

dΠψdΠadΠb...dΠidΠj ...

× (2π)4δ(4)(pψ + pa + pb.. − pi − pj − ..)

× [fafbfψ...(1 ∓ fi)(1 ∓ fj)... | M(ψ + a + b + .. → i + j + ..) |2

− fifj ...(1 ∓ fψ)(1 ∓ fa)(1 ∓ fb)... | M(i + j + .. → ψ + a + b + ..) |2]
(227)

見てのとおり、この方程式には存在する全粒子種の位相空間分布が多数入っているため、

このままでは解くのがかなり困難である。しかし、幸運なことに、我々が問題とするよう

なケースにおいては、1つ（または 2つ）以外の粒子種の位相空間分布関数は全て平衡位

相空間分布関数と見なすことが出来る。なぜなら、これらのその他の粒子種は、ψとの相

互作用に比べ、他の種との相互作用をしやすいからである。

さらに、ボルツマン方程式をより解きやすくするために、次のような仮定をつけてシン

プル化していく：

• T(または CP)不変性

この仮定により次式が成り立つことになる：

| M(ψ + a + b + .. → i + j + ..) |2=| M(i + j + .. → ψ + a + b + ..) |2=| M |2

(228)

このシンプル化を使うと、ボルツマン方程式はよく知られた次式の形になる：

ṅψ + 3Hnψ =
∫

dΠψdΠadΠb...dΠidΠj ...

× (2π)4δ(4)(pψ + pa + pb.. − pi − pj − ..) | M |2

× [fafbfψ...(1 ∓ fi)(1 ∓ fj)...

− fifj ...(1 ∓ fψ)(1 ∓ fa)(1 ∓ fb)...]

(229)

さらに方程式を実用的なものにしていくために、まずは、注目している種が安定（また

は、この種が freeze-outしたときの宇宙年齢と比べて非常に長寿命）の場合を考える。こ

の場合、対消滅（または対生成）のみが共動体積内の ψ、ψ̄の個数を変えうるので。ここ

から以下のような反応に注目して考えていく：

ψψ̄ −→ XX̄ (230)

　　　　　　X、X̄ ： この反応に関わりうる全ての粒子

このX、X̄はたいてい ψとの相互作用より、ψ以外の別の粒子種と”強く”相互作用する

ので、ψに注目して考える場合は、X、X̄ は平衡状態にあるという仮定のもとで考えて問
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題ない。これ以外にも、ψと ψ̄の間には非対称性無し、という仮定をつける。そうすると、

この反応に対するボルツマン方程式は次のようになる：

ṅψ + 3Hnψ =
∫

dΠψdΠψ̄dΠXdΠX̄

× (2π)4δ(4)(pψ + pψ̄ − pX − pX̄) | M |2

× [fψfψ̄(1 ∓ fX)(1 ∓ fX̄) − fXfX̄(1 ∓ fψ)(1 ∓ fψ̄)]

(231)

上のボルツマン方程式は元の形に比べればシンプルな形になってはいるが、まだまだ実

用には向かない。そこで、まず、(230)式の中の分布関数の積の部分を、エネルギー保存則

E(pψ) + E(pψ̄) = E(pX) + E(pX̄)を用いて、式変形していく（式変形におけるボソンと

フェルミオンの違いは一部の符号が逆になるだけなので、以下ではフェルミオンの場合に

注目してみていく）：

fXfX̄(1 − fψ)(1 − fψ̄) = fψfψ̄(f−1
ψ − 1)(f−1

ψ̄
− 1)fXfX̄

= fψfψ̄(exp[α(t) + E(pψ)/T (t)] + 1 − 1)(exp[α(t) + E(pψ̄)/T (t)] + 1 − 1)fXfX̄

= fψfψ̄[exp[2α(t)]]exp[(E(pψ) + E(pψ̄))/T (t)]
1

exp[E(pX)/T (t)] + 1
· 1
exp[E(pX̄)/T (t)] + 1

= fψfψ̄[exp[2α(t)]]
exp[E(pX)/T (t)]

exp[E(pX)/T (t)] + 1
· exp[E(pX̄)/T (t)]
exp[E(pX̄)/T (t)] + 1

= fψfψ̄[exp[2α(t)]]
exp[E(pX)/T (t)] + 1 − 1

exp[E(pX)/T (t)] + 1
· exp[E(pX̄)/T (t)] + 1 − 1

exp[E(pX̄)/T (t)] + 1

= fψfψ̄[exp[2α(t)]](1 − fX)(1 − fX̄)

(232)

　　　　 α(t) ： time-dependent effective chemical potential

　　　　 fX 、fX̄ ：粒子X、X̄ の分布関数

前の方で述べたように、我々が問題とするようなケースにおいては、1つ（または 2つ）以

外の粒子種の位相空間分布関数は全て平衡位相空間分布関数と見なすことが出来るので、

次式で表わすことができる：

fX =
1

exp[E(pX)/T (t)] + 1

fX̄ =
1

exp[E(pX̄)/T (t)] + 1

(233)

この (231)式を (230)式の中に代入すると、次式が得られる：

ṅψ + 3Hnψ =
∫

dΠψdΠψ̄dΠXdΠX̄

× (2π)4δ(4)(pψ + pψ̄ − pX − pX̄) | M |2

× fψfψ̄(1 − fX)(1 − fX̄)[exp[2α(t)] − 1]

(234)
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今、本来であれば、フェルミオンに対してはフェルミ-ディラック統計を、ボソンに対しては

ボーズ-アインシュタイン統計を用いるべきだが、我々が問題とするようなケースにおいて

は粒子密度が小さいことから、全ての粒子種に対してマクスウェル-ボルツマン統計を使っ

て考えることが出来る。この事を用いて、いよいよ最後の式変形をしていく：∫
dΠψdΠψ̄dΠXdΠX̄(2π)4δ(4)(pψ + pψ̄ − pX − pX̄) | M |2

× fψfψ̄(1 − fX)(1 − fX̄)[exp[2α(t)] − 1]

= [2
∫

d3pψ

(2π)3
fψ][2

∫
d3pψ̄

(2π)3
fψ̄][exp[2α(t)] − 1]

×
∫

d3pX

(2π)3
1

2EX
(1 − fX)

∫
d3pX̄

(2π)3
1

2EX̄

(1 − fX̄)

×(2π)4δ(4)(pψ + pψ̄ − pX − pX̄) | M |2 1
4EψEψ̄

= [2
∫

d3pψ

(2π)3
exp[−

E(pψ)
T (t)

]e−α(t)][2
∫

d3pψ̄

(2π)3
exp[−

E(pψ̄)
T (t)

]e−α(t)][e2α(t) − 1]

×
∫

d3pX

(2π)3
1

2EX
(1 − fX)

∫
d3pX̄

(2π)3
1

2EX̄

(1 − fX̄)

×(2π)4δ(4)(pψ + pψ̄ − pX − pX̄) | M |2 1
4EψEψ̄

= [2
∫

d3pψ

(2π)3
exp[−

E(pψ)
T (t)

]][2
∫

d3pψ̄

(2π)3
exp[−

E(pψ̄)
T (t)

]]

×(
1
n0

· n0)(
1
n0

· n0)[1 − e−α(t) · e−α(t)]

×
∫

d3pX

(2π)3
1

2EX
(1 − fX)

∫
d3pX̄

(2π)3
1

2EX̄

(1 − fX̄)

×(2π)4δ(4)(pψ + pψ̄ − pX − pX̄) | M |2 1
4EψEψ̄ | v |

| v |

=< σv > [n2
0(t) − n2(t)]

(235)

これぞ我々が追い求めていた実用的なボルツマン方程式である。また、上の式変形の中で

以下の定義式等をいくつか用いた：

n(t) = e−α(t)n0(t)

n0(t) = 2
∫

d3pψ

(2π)3
exp[−

E(pψ)
T (t)

]

< σv >≡ [
∫

d3pψ

(2π)3
2exp[−E(pψ)/T (t)]

n0(t)
][2

∫
d3pψ̄

(2π)3
2exp[−E(pψ̄)/T (t)]

n0(t)
]

×
∫

d3pX

(2π)3
1

2EX
(1 − fX)

∫
d3pX̄

(2π)3
1

2EX̄

(1 − fX̄)

× (2π)4δ(4)(pψ + pψ̄ − pX − pX̄) | M |2 1
4EψEψ̄ | v |

| v |

(236)
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A.6 ボルツマン方程式導出に関する補足事項

統計力学的補足１：

　反応によって粒子が生成される nkなどの量子状態については、フェルミオンの場

合 1 − nk などに比例する。パウリの排他律により、フェルミオンは同じ量子状態を

複数の粒子で占めることはできないので、このとき nk = 0または 1しかとり得ない。

すなわちこの因子は、すでに占められている量子状態に対して反応後に粒子が生成

される確率が 0であることを意味している。つまり、この因子はパウリの排他律によ

り粒子の生成を阻害するブロッキング因子である。

　また、反応後の粒子がボソンの場合には遷移確率は 1 + nkなどに比例する。ボソ

ンは同じ量子状態をいくらでも占めることが出来るが、はじめに多く占められて量

子状態には、反応によりその量子状態の粒子の生成確率が大きくなることを表わし

ている。つまりこの因子はすでにある量子状態をさらに増やす反応を誘うような誘

導因子である。

統計力学的補足２：

統計力学の基本的な仮説に、閉じた系ではエネルギー面上のどの状態をとる確率も

同じであると仮定する、というものがある。しかし閉じていない系の場合は、あるエ

ネルギーをもつ微視的状態は、別のエネルギーをもつ微視的状態とは異なる確率を

もつ、と考えるのが自然である。つまり微視的状態の寄与を考えるときに、エネル

ギーに依存する何らかの重み ρ(qν , pν)を掛ける必要があるであろう。位相空間の各

点 (qν , pν)にその点の重み ρ(qν , pν)が対応しており、その重みは巨視的な系がその点

の表わす状態にいる確率密度と解釈することができる。閉じた系の場合、ρは与えら

れたエネルギーをもつ等エネルギー面上で一定の値、面外では 0をとる。この確率密

度 ρは『位相空間中の確率密度』あるいは『位相空間中の分布』と呼ばれる。ρは、

全位相空間上で積分すると 1になるように規格化する：∫
d3Nqd3Npρ(qν , pν) = 1 (237)

f(qν , pν)を全エネルギーH(qν , pν)や角運動量 L⃗(qν , pν)などの物理量とすると、与

えられた巨視的状態では平均値 < f >が観測されるであろう。この平均は微視的な

状態 (qν , pν)が重み ρ(qν , pν)に従うとしてとったものである：

< f >=
∫

d3Nqd3Npf(qν , pν)ρ(qν , pν) (238)

同じ系がたくさんあると想像し、それぞれが位相空間の各点 (qν , pν)に対応する微視

的状態をとっていて、全体として分布 ρに従っていると考えると、ある瞬間にすべて

の系の平均値をとったものが (33)式である。このような系の集合をアンサンブルと
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呼ぶ。そこで< f >を物理量 fのアンサンブル平均または統計平均と呼び、ρをアン

サンブルの重み関数と呼ぶ。
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B xf [(49)式]の導出

ここでは (49)式に出てきた xf をボルツマン方程式

dn

dt
= −3Hn− < σv > [n2 − (neq)2] (239)

から導出していく。計算のシンプル化のために変数を tから x = m/T に、nから

Y ≡ n

s
(240)

にして考えていく。ここで sは共動体積内のエントロピー、すなわちエントロピー密度を

表わしている。これらを用いて書き直すと、ボルツマン方程式は

dY

dx
=

−x < σv > s

H(m)
(Y 2 − Y 2

EQ) (241)

となる。ただし、YEQ = nEQ/s、H(m) = 1.67g
1/2
∗ m2/mpl である。変数を変えて書き直

されたボルツマン方程式 [(240)式]を、

s =
2π2

45
g∗sT

3 (242)

を用いてさらに式変形していく：

dY

dx
=

−x < σv > s

H(m)
(Y 2 − Y 2

EQ)

= − xσ0x
−ns

1.67g
1/2
∗ m2/mpl

(Y 2 − Y 2
EQ)

= −
σ0x

−n+1mpl

1.67g1/2
∗ m2

2π2

45
g∗sT

3(Y 2 − Y 2
EQ)

= −
σ0x

−n+1mpl

1.67g1/2
∗ m2

2π2

45
g∗sm

3x−3(Y 2 − Y 2
EQ)

= −0.249(g∗s/g
1/2
∗ )mplmσ0x

−n−2(Y 2 − Y 2
EQ)

(243)

ここで、

λ = [
x < σv > s

H(m)
]x=1

= 0.249(g∗s/g
1/2
∗ )mplmσ0

(244)

を使うと、ボルツマン方程式は次ようにシンプルな形で書けることになる：

dY

dx
= −λx−n−2(Y 2 − Y 2

EQ) (245)

この微分方程式はかなり良い精度で近似的に解くことが出来る。そのことを見ていくため

に、(244)式を平衡からのズレ∆ ≡ Y − YEQを用いて書き直す：

∆
′
= −Y

′
EQ − λx−n−2∆(2YEQ + ∆) (246)
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まずは、かなり早い時期、すなわち 1 < x ≪ xf である頃に注目して考えてみる。この頃

であれば、Y ∼= YEQであり、∆と∆
′
はどちらもかなり小さいと見なすことが可能である

ので、∆
′
= 0として扱うことにより近似解を得ることが出来る。(245)式において∆

′
= 0

とすると、

∆ ∼= −
λ−1xn+2Y

′
EQ

2YEQ + ∆

=
xn+2

2λ
(−

Y
′
EQ

YEQ + 1
2∆

)

∼=
xn+2

2λ
[−

Y
′
EQ

YEQ
(1 − ∆

2YEQ
)]

(247)

となる。ここで、∆ ∼= 0であることから1−∆/2YEQ
∼= 1である。また、YEQ = 0.145(g/g∗s)x3/2e−x

より Y
′
EQ/YEQ = (3/2x) − 1となる。これらの近似を用いると

∆ ∼=
xn+2

2λ
[1 − 3

2x
] (248)

が得られる。今注目している xの領域で考えると、[1− 3
2x ]の部分はO(1)にしかなり得な

い。よって、最終的にこの xの領域における∆として次式が得られる：

∆ ∼=
xn+2

2λ
(249)

次に、freeze-outからかなり時間が経過した後、すなわち x ≫ xf である頃における近似

解を求めていく。この段階においては、YEQ
∼= 0より∆ ∼= Y ≫ YEQとなるので、(245)

式は

∆
′ ∼= −λx−n−2∆2 (250)

と近似的に書ける。この微分方程式を xについて x = xf から x = ∞までで積分すると
Y∞、すなわち x = ∞における Y が次のように得られる：

Y∞ = ∆∞ =
n + 1

λ
xn+1

f
(251)

ところで、x = xf となる瞬間というものを言葉で表現すると、ある粒子が熱平衡状態か

ら離れる、すなわち Y の値が YEQ の値と離れ始める瞬間である、と言える。これを数式

で表現する。そのために今述べた言葉の表現、Y の値が YEQの値と離れ始める瞬間、とい

う部分に注目する。これは、別の表現の仕方をすると、∆の値が YEQの値と同じオーダー

になる時、ということができる。この事を利用して x = xf となる瞬間を

∆(xf ) = cYEQ(xf ) (252)

となる瞬間であると定義する。ここで cはO(1)の定数を表わしている。この定義と (246)

式を用いて、freeze-outより前、すなわち 1 < x ≪ xf であるような時期から x = xf 付近
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に近づけていった場合の近似解を求める。(246)式と (251)式より、

∆(xf ) = −λ−1xn+2
f Y

′
EQ(xf )/(2YEQ(xf ) + ∆(xf ))

= −xn+2
f Y

′
EQ(xf )/λYEQ(xf )(2 + c)

= −
xn+2

f

λ(2 + c)
Y

′
EQ(xf )

YEQ(xf )

(253)

となる。ここで、再度、Y
′
EQ(xf )/YEQ(xf ) = (3/2xf ) − 1がO(1)にしかなり得ないとい

うことを用いると、1 < x ≪ xf であるような時期から x = xf 付近に近づけた場合の近似

解として次式が得られることになる：

∆(xf ) ∼= xn+2
f /λ(2 + c) (254)

今求めた近似解を (251)式に代入することにより

YEQ(xf ) ∼= xn+2
f /λc(2 + c) (255)

が得られる。この得られた結果と (?)式より、

0.145(g/g∗s)x
3/2
f e−xf = xn+2

f /λc(2 + c) (256)

という等式が成り立つ。ここで a = 0.145(g/g∗s)とおき、この等式を xf について解くこ

とによって xf の表式が求められる：

xf = log[(2 + c)λac] + log[x
−n− 1

2
f ]

= log[(2 + c)λac] − (n +
1
2
)log[xf ]

∼= log[(2 + c)λac] − (n +
1
2
)log[log[(2 + c)λac]]

(257)

この式を用いて算出した数値的結果を以下の図に示す。
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(256)式において c(c + 2) = n + 1と選ぶと、最終的に (49)式に示されている xf が求めら

れることになる。ちなみに、この cの選び方であれば、xf ≥ 3の場合の final abundance

Y∞と高精度で一致することが分かっている。
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