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3.1 N = 1 Poincaré超重力理論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 N = 1 AdS 超重力理論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 局所超変換に対する作用の不変性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 代数の閉包性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.3 反 de Sitter 時空解 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 結論 37

付録 A Einstein 方程式の導出 38

付録 B Rarita-Schwinger 場 ψµ に対する局所超変換の交換関係 (m = 0) 41

付録 C 反 de Sitter時空 46

参考文献 49

1



1 序論

近年、超弦理論と物性物理分野の研究者の間で盛んに研究が行われている分野の 1つに AdS/CFT 対応と

呼ばれる分野がある。それは AdS時空 (anti de Sitter spacetime)上の重力理論が、その時空の境界に相当す

る、それよりも 1つ次元の低い時空における共形場理論 (conformal field theory)と理論として等価になると

いうものである。この定式化は超弦理論と呼ばれる理論で行われている。超弦理論は量子重力を記述するミク

ロな理論であり、その低エネルギー有効理論として超重力理論が存在するのである。本論文では、そのための

理解を深める第一歩として、AdS時空における重力理論の中で、簡単な例である、時空の次元 D = 4、理論

に含まれる超対称性の数 N = 1の場合の AdS超重力理論について議論する。

本論文の構成は、まず第 2章で、超重力理論を議論するために必要な定式化、時空そのものがもつ対称性、

また超対称性について述べる。そして第 2章での準備の下、第 3章では、まず AdS 超重力理論の特別な場合

である、Poincaré超重力理論についてから始めることとする。そこでは局所変換による作用の不変性、局所変

換の交換関係がつくる代数、それからそれらの変換に対し場の方程式の解が不変に保たれるような変換の形に

ついてなど、種々の性質について述べる。そしてその後 Poincaré超重力理論の拡張として、AdS超重力理論

を議論する。流れとしては Poincaré超重力理論の場合と同じような流れだが、AdS超重力理論は、Poincaré

超重力理論を含む形になっているので、上で述べた作用の不変性、代数の閉包性はここでまとめて示すことと

する。ただし、Poincaré超重力理論に含まれる Rarita-Schwinger 場についての計算の詳細は、紙面の数を要

するため付録 Bとしてまとめた。また付録では、Einstein 方程式の導出、先ほどの Rarita-Schwinger 場に関

する計算の詳細、反 de Sitter 時空の定義や性質についてまとめてある。この論文では、全体にわたり、必要

な計算はできるだけ省略せずにそのまま式変形を記すことを心掛けた。

2



2 重力場と超対称性

この章では、超重力理論を議論するにあたり必要な下準備を行う。超重力理論は理論の中にフェルミオン

が含まれるため、重力場と結合させるには多脚場形式という新たな形式を用いて定式化しなくてはならない。

よってまず通常の計量を用いた定式化を示したのち、多脚場形式について議論する。その後 2.3節では時空の

対称性について、2.4節では超対称性について述べる。この議論から、第 3章の超対称性をもつ重力理論、超

重力理論へと続いていく。

また 2.1節から 2.3節にかけては特に明記しない限り時空は時間 1次元、空間 D − 1次元、合わせて D 次

元の、一般の次元の場合で議論する。

2.1 計量形式

Einstein の一般相対性理論において、重力理論の定式化を行う際の重力場を記述する力学変数として用いら

れるのは、時空の曲がり具合を表す計量 gµν(x)である。これはスカラー場やベクトル場などのボソン場と重

力場を結びつける理論であり、この定式化では、重力場 gµν(x)に対するラグランジアン (密度)は、

L =
1

16πG

√
−g(R− 2Λ) (2.1)

である。第 1項は Eienstein のラグランジアン、第 2項は宇宙項と呼ばれる。Gは万有引力定数、Λは宇宙定

数であり、また g = detgµν である。このような gµν(x)を用いた定式化を計量形式と呼ぶ。簡単のため以下で

は 16πG = 1となるような単位系を用いることにする。(2.1)で用いられている Rはスカラー曲率と呼ばれ、

Ricci テンソル Rµν、Riemann の曲率テンソル R ρ
µν σ と共に以下で定義される。

R = gµνRµν , Rµν = R ρ
ρµ ν ,

R ρ
µν σ = ∂µΓ

ρ
νσ − ∂νΓρµσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ

(2.2)

ここで gµν は gµν の逆行列である。また Γλµν はアフィン接続と呼ばれ、一般には不定性があるが、一般相対

性理論では次の 2つの条件を定めて一意に定める。

計量条件 :∂λgµν − Γρλµgρν − Γρλνgµρ = 0

捩率条件 :Γλµν = Γλνµ
(2.3)

これらの条件により定まる Γλµν は、

Γλµν =
1

2
gλρ(∂µgνρ + ∂νgµρ − ∂ρgµν) (2.4)

であり、(2.3)の条件の下でのアフィン接続を特に Christoffel 記号と呼ぶ。この Christoffel 記号を用いると、

ベクトルやテンソルに対して一般座標変換に関する共変微分を定義できる。たとえば、反変ベクトル V µ と共

変ベクトル Vµ に対する共変微分は、

DµV
ν = ∂µV

ν + ΓνµρV
ρ,

DµVν = ∂µVν − ΓρµνVρ
(2.5)
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と定義される。*1これらの共変微分は一般座標変換に対してテンソルとしてふるまう。また (2.3) の計量条件

は、共変微分を用いると、Dλgµν = 0と簡潔に表せる。

ラグランジアン (2.1)から、変分原理を用いて gµν について場の方程式を求めると、

Rµν −
1

2
gµνR+ Λgµν =

1

2
Tµν (2.6)

が得られ、この式は Einstein 方程式と呼ばれる。Tµν は重力場以外の物質の運動量・エネルギーテンソルで

ある。特に真空 (Tµν = 0)の場合、(2.6)式は、空間の次元が D 次元であるとして、

Rµν =
2

D − 2
Λgµν (2.7)

と簡潔な形になる。(Einstein 方程式の導出は付録 A参照)

また (2.1)で定義されるラグランジアンを D 次元時空で積分して得られる作用は、任意の無限小ベクトル

関数 ξµ(x)を変換パラメータとする無限小一般座標変換

δGgµν = ξρ∂ρgµν + ∂µξ
ρgρν + ∂νξ

ρgµρ

= ξρ(Γλρµgλν + Γλρνgµλ) + ∂µξ
ρgρν + ∂νξ

ρgµρ

= Dµξ
ρgρν +Dνξ

ρgρµ = Dµξν +Dνξµ (∵ Dλgµν = 0)

(2.8)

に対し不変であることが確かめられる。このことを具体的に見るには、付録 Aの (A.17)式から始めればよい。

δGS =

∫
dDx
√
−g(Rµν −

1

2
gµνR+ Λgµν)δGg

µν (2.9)

ここで Einstein テンソル Gµν を導入する。Einstein テンソル Gµν は以下で定義され、次の性質を満たすも

のとして知られる。

Gµν = Rµν −
1

2
gµνR,

Gµν = Gνµ, DµG
µν = 0

(2.10)

したがって (2.9)は、(2.8)、(2.10)、また計量条件 (2.3)から、

δGS =

∫
dDx
√
−g(Gµν + Λgµν)δGg

µν

=

∫
dDx
√
−g(Gµν + Λgµν)(D

µξν +Dνξµ)

= 2

∫
dDx
√
−g(Gµν + Λgµν)Dµξν

= −2
∫
dDx
√
−gDµ(G

µν + Λgµν)ξν = 0

(2.11)

と表面項を無視することで 0となり、この作用は一般座標変換に対し不変であることがわかる。またこのこと

は (2.1)の表式は、全ての添字が縮約されていることからも明示的に理解できる。

*1 本論文では、共変微分を表す記号としては全て D で統一することとする。
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2.2 多脚場形式

前節では、スカラー場、テンソル場などのボソン場は、計量を用いることで一般座標変換に対して共変な理

論を作ることができることを確かめた。ではスピノルで記述されるフェルミオン場に対してはどうであろう

か。スピノルは元来 Lorenrz 変換に対し一定の変換則をもつ表現であった。すなわち平坦なMinkowski 時空

においてのみ変換則が定義されている。したがってこれをそのまま重力の存在する曲がった時空に拡張するこ

とはできない。フェルミオン場と重力場を結合させるには、曲がった時空と平坦な時空を結びつける新たな量

が必要なのである。そこで用いられるのが多脚場による定式化である。多脚場は、曲がった時空の各点におけ

る接空間である局所 Lorentz 系と曲がった時空を結びつける。その局所 Lorentz 系においてスピノルは定義

され、そのスピノルは多脚場を通じて曲がった時空内で記述される。

具体的には、まず時空の各点 xµ に D 個の独立なベクトル ea
µ(x) (a = 0, 1, · · · , D − 1)を、

ea
µ(x)eb

ν(x)gµν(x) = ηab ただしηab = diag(−1,+1, · · · ,+1),

eµ
a(x)ea

ν(x) = δνµ, ea
µ(x)eµ

b(x) = δba
(2.12)

のように互いに直交し、単位長さをもつように選ぶ。*2ここで eµ
a(x) は ea

µ(x) の逆行列として定義される。

そしてこの場 ea
µ(x)を多脚場 (4次元の場合は四脚場)と呼ぶ。eaµ(x)は 2種類の添字を持つ量であり、ギリ

シャ添字 µは世界添字、またローマ添字 aは局所 Lorentz 添字と呼ばれ、それぞれ曲がった時空の添字と平

坦な時空の添字に対応する。(2.12)を用いると、曲がった時空の計量 gµν(x)は、

gµν(x) = eµ
a(x)eν

b(x)ηab (2.13)

と多脚場を用いて表される。すなわち多脚場は計量 gµν(x)よりも基本的な量だといえ、曲がった時空の座標

依存性を請け負っている。よって、多脚場形式では、計量の代わりに多脚場を力学変数として用いることがで

きる。(2.12)、(2.13)より多脚場 ea
µ(x)の変換性に着目すると、下付き添え字 aに対しては、局所 Lorentz

変換に対し共変ベクトルとして変換し、また上付き添字 µについては一般座標変換に対し反変ベクトルとし

て変換されなければならないことが分かる。したがって、多脚場の添字の上げ下げは、以下に示すように計量

gµν とMinkowski 計量 ηab によって行われる。

eµa = ηabeµ
b, ea

µ = gµνeνa (2.14)

また多脚場の行列式 eを e = det(eµ
a)と定義し、行列式が正になるように多脚場を選ぶと、計量 gµν の行

列式 g との関係は、(2.13)から、

det(gµν) = det(ηab)det(eµ
a)det(eν

b)

= −{det(eµa)}2

⇒ e =
√
−g

(2.15)

となることが分かる。

*2 以下の全ての議論では平坦な時空の計量については ηab = diag(−1,+1, · · · ,+1)を用いることとする。
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計量 gµν は対称テンソルのため自由度としては D(D + 1)/2個あるが、それに対し多脚場の自由度は添え

字に対する制限がないためD2 個である。すなわち、多脚場はその差D(D− 1)/2個の余分な自由度をもって

いる。実際 (2.13)を満たす eµ
a に対し、

e′µ
a
(x) = eµ

b(x)Λb
a(x) Λa

c(x)Λb
d(x)ηcd = ηab (2.16)

と変換を施しても、それは同じ gµν に対し (2.13)を満たす。この変換は局所 Lorentz 変換と呼ばれ、Λa
b(x)

はD(D− 1)/2個の自由度を持ち、多脚場の余分な自由度を表す。したがって、計量形式の理論を多脚場で書

き直したものは、一般座標変換だけでなく、局所 Lorentz 変換に対しても不変な理論になっている。

また多脚場を用いると、世界添字や局所 Lorentz 添字を持つベクトルやテンソルの添字を互いに入れ替える

ことができる。

Aa(x) = ea
µ(x)Aµ(x) Aµ(x) = eµ

a(x)Aa(x) (2.17)

この性質から、世界添字、局所 Lorentz 添字を持つベクトルの添字の上げ下げも通常通り行えることがわかる。

Aµ(x) = gµν(x)Aν(x) Aa(x) = ηabAb(x) (2.18)

多脚場は eµ
a(x)世界添字と局所 Lorentz 添字を 1つずつ持っているので、先ほどの変換性の議論から、無限

小の一般座標変換 δG と局所 Lorentz 変換 δL に対し、

δGeµ
a = ξν∂νeµ

a + ∂µξ
νeν

a

δLeµ
a = −λabeµb

(2.19)

と変換する。ここで ξµ(x)と λab(x) = −λab(x) (Λab = δab − λab)は無限小の変換パラメータである。
局所 Lorentz 添字を持ったテンソルを微分したものは、局所 Lorentz 変換に対しもとのテンソルと同じ変

換性を示すだろうか。例として局所 Lorentz 添字を持つ反変ベクトル V a(x) の微分 ∂µV
a(x) について考え

てみると、(2.19)から分かるように、変換のパラメータが局所的である場合は一般に余分な項が残ることがわ

かる。

δL(∂µV
a(x)) = ∂µ(δLV

a(x)) = −λab∂µV b(x)− ∂µλabV b (2.20)

ラグランジアンには一般に場の運動項が入るため、理論を局所 Lorentz 不変に保つためには、局所 Lorentz

変換に対しても、一般座標変換の場合と同様に、ゲージ場を導入することで共変微分を定義しなくてはならな

い。そこで導入されるゲージ場がスピン接続 ω a
µ b(x) (ωµ

ab = −ωµba)であり、局所 Lorentz 変換に対し、

δLωµ
ab = Dµλ

ab ≡ ∂µλab + ω a
µ cλ

cb + ω b
µ cλ

ac (2.21)

と変換される。このスピン接続を用いると、局所 Lorentz 変換に対する共変微分を定義でき、たとえばベクト

ル V a に対しては、

DµV
a = ∂µV

a + ω a
µ bV

b (2.22)

と定義される。(一般座標変換に対する共変微分と同じ記号 D を用いる。したがって書き下した表式は作用す

る場の添字の種類に依存することに注意されたい)この定義により、DµV
a の局所 Lorentz 変換を考えると、

(2.21)より、
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δL(DµV
a) = ∂µδLV

a + δLω
a
µ bV

b + ω a
µ bδLV

b

= ∂µ(−λabV b) + (∂µλ
a
b + ω a

µ cλ
c
b + ωµb

cλac)V
b − ω a

µ bλ
b
cV

c

= −λab(∂µV b + ω b
µ cV

c) = −λab(DµV
b)

(2.23)

と確かに共変的に変換することがわかる。

一般座標変換に対する共変微分を定義する際に導入されたアフィン接続は、(2.3)、(2.4)でみたように条件

を課すことによって、Christoffel 記号として計量を用いて表すことができた。それと同様に、スピン接続も多

脚場を用いて表すことができ、そのためにスピン接続に対して次の条件を要請する。

Dµeν
a −Dνeµ

a = ∂µeν
a + ω a

µ beν
b − (µ↔ ν) = 0 (2.24)

この条件は捩率条件と呼ばれる。ここで一般座標変換に対する共変微分に伴い現れるアフィン接続は条件

(2.3)を満たす Christoffel 記号 (2.4)であるとし、そのため µ, ν に反対称化されている上のような場合には相

殺される。また同様に平坦な時空の計量に対する計量条件を考えると、

Dλη
ab = ∂λη

ab + ω a
µ cη

cb + ω b
µ cη

ac = 0

⇒ ωµ
ab = −ωµba

(2.25)

であり、今考えているスピン接続に関しては自動的に満たされていることが分かる。(2.24)の条件により ωµab

は一意に定まり、

ωµab(e) =
1

2
(ea

νΩµνb − ebνΩµνa − eaρebσeµcΩρσc)

Ωµνa = ∂µeνa − ∂νeµa
(2.26)

と多脚場を用いて表される。Ωµνa はリッチ回転係数と呼ばれる量である。実際に (2.24) に対し (2.26) の

ωµab を代入すると、

Dµeν
a −Dνeµ

a

= ∂µeν
a + ω a

µ beν
b − (µ↔ ν)

= ∂µeν
a +

1

2

{
eaρeν

b(∂µeρb − ∂ρeµb)− (∂µeν
a − ∂νeµa)− eaρeµc(∂ρeνc − ∂νeρc)

}
− (µ↔ ν)

=
1

2

{
(∂µeν

a + ∂νeµ
a)− eaρ(eνb∂ρeµb + eµ

c∂ρeνc) + eaρ(eν
b∂µeρb + eµ

c∂νeρc)
}
− (µ↔ ν)

= 0

(2.27)

と 3番目の等号における中括弧内の添字が µ, ν の交換に対し対称になるため、(2.26)は捩率条件 (2.24)を満

たすことが分かる。

また (2.26)のようにスピン接続を定めると、Christoffel 記号 (2.4)とスピン接続の間には関係が付き、

Dµeν
a = ∂µeν

a + ω a
µ beν

b − Γλµνeλ
a = 0 (2.28)

が成立する。すなわち多脚場の共変微分はゼロとなる。これにより計量形式の計量条件 (2.3)とも無矛盾とな

る。こちらも実際に確かめてみる。そのためには (2.4) に含まれる gµν を (2.13) を用いて多脚場に置き換え

ればよい。
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Γλµνeλ
a =

1

2
eρa

(
∂µ(eν

beρb)− ∂ν(eµbeρb)− ∂ρ(eµbeνb)
)

=
1

2
eρa(eρb∂µeν

b + eν
b∂µeρb + eρb∂νeµ

b + eµ
b∂νeρb − eνb∂ρeµb − eµb∂ρeνb)

=
1

2
(∂µeν

a + ∂νeµ
a + eρaeν

b∂µeρb + eρaeµ
b∂νeρb − eρaeνb∂ρeµb − eρaeµb∂ρeνb)

= ∂µeν
a +

1

2
{eρa(∂µeρb − ∂ρeµb)− ebρ(∂µeρa − ∂ρeµa)− eρaebσeµc(∂ρeνc − ∂νeρc)} eνb

= ∂µeν
a +

1

2
(eρaΩµρb − ebρΩµρa − eρaebσeµcΩρσc)eνb

= ∂µeν
a + ω a

µ beν
b

⇒ Dµeν
a = ∂µeν

a + ω a
µ beν

b − Γλµνeλ
a = 0

(2.29)

また (2.28)から、Christoffel 記号は多脚場を用いて、

Γλµν = ea
λ∂µeν

a + ω a
µ beν

bea
λ (2.30)

と表せるので、(2.2)の Riemann 曲率テンソルを多脚場形式で表すことができる。

∂µΓ
ρ
σν = ∂µΓ

ρ
νσ = ∂µ(ea

ρ∂νeσ
a + ω a

ν beσ
bea

ρ)

= ∂µea
ρ∂νeσ

a + ea
ρ∂µ∂νeσ

a + ∂µω
a
ν beσ

bea
ρ + ω a

ν b∂µeσ
bea

ρ + ω a
ν beσ

b∂µea
ρ

:::::::::::

ΓρµλΓ
λ
νσ = (ea

ρ∂µeλ
a + ω a

µ beλ
bea

ρ)(ec
λ∂νeσ

c + ω c
ν deσ

dec
λ)

= ea
ρec

λ∂µeλ
a∂νeσ

c + ea
ρeσ

dec
λ∂µeλ

aω c
ν d

:::::::::::::::::
+ ea

ρ∂νeσ
bω a
µ b + ea

ρeσ
dω a

µ bω
b
ν d

(2.31)

また 0 = ∂µδ
a
c = ∂µ(eλ

aec
λ) = ec

λ∂µeλ
a + eλ

a∂µec
λ

⇒ ea
ρec

λ∂µeλ
a = ea

ρ(−eλa∂µecλ) = −∂µecρ
(2.32)

(2.32) から、(2.31) の下線部分と波線部分の組み合わせはそれぞれ打ち消しあうことが分かる。すると

Riemann 曲率テンソルはスピン接続を含む以下の形で与えられる。

R ρ
µν σ = ∂µΓ

ρ
νσ + ΓρµλΓ

λ
νσ − (µ↔ ν)

= ∂µω
a
ν beσ

bea
ρ + ea

ρeσ
bω a
µ cω

c
ν b

(((((((((((((
+ea

ρ(ω a
µ b∂νeσ

b + ω a
ν b∂µeσ

b) +������
ea
ρ∂µ∂νeσ

a − (µ↔ ν)

= ea
ρeσ

b(∂µω
a
ν b − ∂νω a

µ b + ω a
µ cω

c
ν b − ω a

ν cω
c
µ b)

= ea
ρeσ

bR a
µν b

(2.33)

2番目の等号では、斜線部分は µ, ν にの交換に対し対称な項であるので打ち消される。また (2.33)で定義した

R a
µν b = ∂µω

a
ν b − ∂νω a

µ b + ω a
µ cω

c
ν b − ω a

ν cω
c
µ b (2.34)

は Christoffel 記号の場合と同様、スピン接続より作られた場の強さと解釈できる。一般相対性理論における

場の強さ、すなわち Riemann 曲率テンソルは、世界添字をもつベクトル V µ に対する共変微分の交換関係で、

8



[Dµ, Dν ]V
ρ = R ρ

µν σV
σ (2.35)

と表されるので、(2.35)の両辺に eρ
a を作用させ、多脚場の共変微分はゼロであったことを思い出すと、

[Dµ, Dν ]V
a = R a

µν σV
σ = (eσ

bec
σ)R a

µν bV
c = R a

µν bV
b (2.36)

と、局所 Lorentz 添字をもつベクトル V a に対する式となり、そこに含まれる場の強さが (2.34)で与えられ

ることが分かる。

2.3 時空の対称性

重力場の形 eµ
a、すなわち時空の曲がり具合が与えられたとき、その時空の持つ対称性を考える。そのよう

な時空の対称性をアイソメトリと呼ぶ。これは、一般座標変換と局所 Lorentz 変換のうち、その重力場の形を

保つような変換で与えられる。eµa に対する一般座標変換と局所 Lorentz 変換は、(2.19)より、

(δG + δL)eµ
a = ξν∂νeµ

a + ∂µξ
νeν

a − λabeµb (2.37)

であった。これを独立な 2つの項 eν
a と eµ

b で括ることを考えると、計量に対する無限小一般座標変換の形

(2.8)、λab の添字の反対称性から類推して、

(Dµξν +Dνξµ) (Daξb −Dbξ
a) (2.38)

という構造があると予想される。実際、(2.38)の 2つに対し、以下のような項を考えると、(2.37)に帰着する

項が得られる。

1

2
(Dµξν +Dνξµ)e

νa =
1

2
(∂µξν + ∂νξµ)e

νa − Γρµνξρe
νa

1

2
(Daξb −Dbξ

a)eµ
b =

1

2
(eνaeµ

bDνξb −Dµξ
a)

=
1

2
eνaeµ

b∂νξb +
1

2
eνaeµ

bωνbcξ
c − 1

2
∂µξ

a − 1

2
ω a
µ cξ

c

=
1

2
∂νξµe

νa − 1

2
eνaξb∂νeµ

b − 1

2
eνaξc(ω

c
ν beµ

b)− 1

2
∂µξ

a − 1

2
eb
νξb(ω a

µ ceν
c)

=
1

2
∂νξµe

νa − 1

2
eνaξb∂νeµ

b − 1

2
eνaξc(−∂νeµc + Γρνµeρ

c)

− 1

2
ξν∂µeν

a − 1

2
eν
a∂µξ

ν − 1

2
ξν(−∂µeνa + Γρµνeρ

a)

=
1

2
∂νξµe

νa − 1

2
∂µξ

νeνa − 1

2
Γρµνξρe

νa − 1

2
Γρµνξ

νeρ
a

したがって、

1

2
(Dµξν +Dνξµ)e

νa − 1

2
(Daξb −Dbξ

a)eµ
b

=
1

2
∂µξ

νeν
a +

1

2
∂µξνe

νa − 1

2
Γρµνξρe

νa +
1

2
Γρµνξ

νeρ
a

= ∂µξ
νeν

a +
1

2
ξρeνa∂µgνρ −

1

2
Γρµνξρe

νa +
1

2
Γρµνξ

νeρ
a

= ∂µξ
νeν

a + Γρµνξ
νeρ

a

(2.39)
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が得られる。最後の等号へは、計量条件 (2.3)を用いた。(2.39)の最後の等号の Christoffel 記号の含まれる

項を打ち消すために、両辺から ξνω a
ν beµ

b = −ξν∂νeµa + Γρνµξ
νeρ

a を引くと、

1

2
(Dµξν +Dνξµ)e

νa − 1

2
(Daξb −Dbξ

a)eµ
b − ξνω a

ν beµ
b = ξν∂νeµ

a + ∂µξ
νeν

a (2.40)

が得られる。よって、(2.37)から、eµa に対する一般座標変換と局所 Lorentz 変換は、

(δG + δL)eµ
a =

1

2
(Dµξν +Dνξµ)e

νa −
[
λab +

1

2
(Daξb −Dbξ

a)− ξνω a
ν b

]
eµ
b (2.41)

のように書くことができる。したがって、eµa が不変であるためには、

Dµξν +Dνξµ = 0 λab = −D[aξb] − ξνωνab (2.42)

が成立しなければならない。(ここで角括弧 [ ]は添字の反対称化を表す括弧である。)*3初めの式は、一般座

標変換のパラメータ ξµ が満たすべき方程式で、Killing 方程式と呼ばれる。また、それを満たすベクトル ξµ

を Killing ベクトルと呼ぶ。また Killing ベクトル ξµ が得られると、2番目の式から、局所 Lorentz 変換のパ

ラメータ λab が一意に定まる。

後のために、平坦な Minkowski 時空の場合について具体的な形を求めておく。この場合は、eµa = δaµ、

ωµab = 0であるので、このとき ξµ と λab は (2.42)より、

ξµ = aµνx
ν + bµ λab = aab (aµν = −aνµ、bµは定数) (2.43)

と求まる。この ξµ は、大域的 Lorentz 変換 aµν と並進 bµ からなる座標変換 (Poincaré 変換) を表してい

る。また、それと同時に定数 aab をパラメータとする局所 Lorentz 変換を同時に行う必要がある。したがって

Minkowski 時空における場の理論では、この特別な一般座標変換と局所 Lorentz 変換に対する対称性が存在

する。このMinkowski 時空がもつ対称性を Poincaré対称性という。

2.4 超 Poincaré代数と超重力多重項

超重力理論における「超」とは、本章の題にもあるように、超対称性のことである。超対称性とは、整数ス

ピンを持つボソンと、半整数スピンを持つフェルミオンの間の対称性である。超対称性を持つ理論はいくつか

のボソンとフェルミオンとで多重項から成り、それらは超対称性の変換、超変換によってお互い結びついてい

る。超変換は、Poincaré対称性などの時空対称性とともに、超代数 (superalgebra)をつくる。この超代数は

一般に、考えている時空の次元、時空対称性の種類、超対称性の個数 (N と表す)に応じていろいろな種類が

あるが、ここでは、単純で基本的な超代数であり、後の Poincaré超重力理論へとつながるN = 1超 Poincaré

代数について述べる。

そのためにまず、フェルミオンを記述するスピノル場の理論に欠かせないガンマ行列について述べておく。

ただし、この節では後のため D = 4とする。4次元のガンマ行列は、反交換関係

{γa, γb} = 2ηab (2.44)

*3 一般に、n個の添字の反対称化は、角括弧 [ ]を用いて、T[a1···an] =
1
n!

∑
P (−1)PTP (a1···an) のように表される。(−1)P は、

P (a1 · · · an)が a1 · · · an の偶置換の時は +1、奇置換の時は −1を表す。この記法は、以下の議論でしばしば用いられる。
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を満たす 4 × 4行列である。ここで ηab = (−1,+1,+1,+1) である。よってガンマ行列がかかるスピノル場

ψ は 4つの成分を持つ。またスピノルの Dirac 共役 ψ̄ を、

ψ̄ = ψ†iγ0 (2.45)

で定義する。

さて超 Poincaré 代数とは、時空並進の生成子 (4 元運動量演算子)Pa と Lorentz 変換の生成子 Mab

(Mab = −Mba) からなる Poincaré 代数に、超変換の生成子である超電荷 (supercharge) Qα を付け加えて

できる代数である。(ここでスピノル添字としては α, β, · · · = 1, 2, 3, 4 を用いる) そのうち、Mojorana スピ

ノルの超電荷 1 種類だけ含む場合を N = 1 超 Poincaré 代数と呼ぶ。ここで Majorara スピノル ψ とは、

Majorana 条件 ψ = ψc を満たすスピノルであり、スピノルの荷電共役 ψc は、

ψc = Cψ̄T (2.46)

と定義される。ここで荷電共役行列 C は、

C−1γaC = −γaT CT = −C C†C = 1 (2.47)

を満たす 4× 4行列である。N = 1超 Poincaré代数の (反)交換関係は、

[Mab,Mcd] = −iηbcMad + iηbdMac + iηacMbd − iηadMbc

[Mab, Pc] = −iηbcPa + iηacPb

[Pa, Pb] = 0

[Mab, Qα] =
i

2
(γab)α

β
Qβ

[Pa, Qα] = 0

{Qα, Q̄β} = −2i(γa)αβPa

(2.48)

である。ここで γab = γ[aγb] はガンマ行列の反対称積として定義される。(2.48) の上 3 つの交換関係は通常

の Poincaré代数である。4番目の交換関係は Qα がスピノルとして変換されることを示している。また超電

荷はフェルミオン的な生成子であるので、超電荷どうしは反交換関係になっている。

超対称性をもつ理論では、いくつかの異なるスピンの粒子が集まって多重項をなす。これを超多重項

(supermultiplet)という。超 Poincaré代数の 1粒子状態に対する既約表現を求めることで、どのような粒子

が超多重項をつくるかを知ることができる。まず、交換関係 (2.48)の 5番目の式より、超多重項の中の 1つ

の状態に Qα を作用させてできる状態は全て Pa の同じ固有値 pa を持つことが分かる。また PaP
a は全ての

生成子と交換することが分かるので、1つの超多重項の中の全ての状態の質量m2 = −papa は等しくなる。こ
こでこの状態を具体的に求めるため、ガンマ行列の具体的な表示として

γ0 = −i
(

0 1
1 0

)
γi = −i

(
0 σi
−σi 0

)
(i = 1, 2, 3) (2.49)

を用いる。ここで、σi は 2× 2 Pauli 行列

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(2.50)
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である。また、(2.47)を満たす荷電共役行列 C とMajorana 超電荷 Qは、この表示において

C =

(
iσ2 0
0 −iσ2

)
Q =

(
iσ2Q

†T

Q

)
(2.51)

という形になる。Qに対するMajorana 条件 (2.46)から、超電荷の独立な成分は下の 2成分 Q3, Q4 であり、

上の 2成分はそのエルミート共役で表すことができる。

ここで質量がゼロの 1 粒子状態からなる超多重項を考える。この場合は、4 元運動量固有値が pa =

(E, 0, 0, E) (E > 0) となる慣性系が存在し、そこでは超電荷の反交換関係は (2.48)から Q̄ = Q†iγ0 を用い

ると、

{Qα, (Qβ)†} = 2(γaγ0)αβPa = 2E(1 + γ3γ0)αβ = 2E


0

2
2

0


αβ

(2.52)

であるから、α = 3, 4のうちゼロでないものは

{Q3, (Q3)
†} = 4E (2.53)

である。この Q3 から

b = (4E)−
1
2Q3 b† = (4E)−

1
2Q†3 (2.54)

で新たな演算子 b, b† を定義すると、これらはフェルミオンの生成・消滅演算子と同じ反交換関係

{b, b†} = (4E)−1{Q3, Q
†
3} = 1

{b, b} = 0 {b†, b†} = 0
(2.55)

を満たしている。下の 2式は、(2.51)から具体的に計算すると、Q3 = −Q†2(場の演算子とすると複素共役は
エルミート共役に等しい)となることから (2.52)より確かめられる。ここで、b |λ⟩ = 0を満たす状態 |λ⟩を用
意する。(もしこのような状態が無くても、(2.55)から bを 2回作用させればゼロになるので、必要な分だけ

作用させることによって必ずその状態は得られる)するとその表現の基底は

|λ⟩ b† |λ⟩ (2.56)

で与えられる。bも b† も 2回作用させればゼロとなるので、独立な状態はこれだけである。また Q4 について

は、任意の状態 |ψ⟩に作用させても、

||Q†4 |ψ⟩ ||2 + ||Q4 |ψ⟩ ||2 = ⟨ψ| {Q4, Q
†
4} |ψ⟩ = 0

⇒ Q†4 |ψ⟩ = 0 , Q4 |ψ⟩ = 0
(2.57)

であり、物理的な状態を与えないので、Q4 = 0としてもよい。

ここで生成子M12 と b, b† の交換関係を考えてみると、(2.48)の 4番目の項関係から、
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[M12, b
†] = −(2E)−

1
2 [M12, Q2] = −(2E)−

1
2
i

2
(−i)Q2

=
1

2
(2E)−

1
2Q†3 =

1

2
b†

同様にして [M12, b] = −
1

2
b

(2.58)

が得られる。M12 の固有値は z 軸方向の角運動量であり、m = 0で pa = (E, 0, 0, E)のような慣性系の場合

はそれはヘリシティに等しい。よって |λ⟩としてヘリシティ hを持つM12 の固有状態 |h⟩を選ぶと、

M12 |h⟩ = h |h⟩

M12b
† |h⟩ =

(
b†M12 + [M12, b

†]
)
|h⟩ =

(
h+

1

2

)
b† |h⟩

(2.59)

であるので、b† はヘリシティを 1
2 だけ上げる役割を担い、b

† |h⟩はヘリシティ h+ 1
2 を持つ状態を表す。同様

に、bはヘリシティを 1
2 だけ下げる役割を担っている。したがって、これらの状態はヘリシティ (h, h+ 1

2 )の

超多重項をなしている。また場の理論の CPT 定理によると、ヘリシティが hの状態が存在すれば、−hの状
態も存在するので、場の理論で実現される超多重項は(

h, h+
1

2

)
⊕
(
−h− 1

2
,−h

) (
h = 0,

1

2
, 1, · · ·

)
(2.60)

となる。そのうち h = 3
2 としたものは超重力多重項とよばれ、(

3

2
, 2

)
⊕
(
−2,−3

2

)
(2.61)

である。これはスピン 2とスピン 3/2の状態を超多重項として含む理論に対応し、次章で議論する超重力理

論へとつながることが後に分かる。
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3 D = 4超重力理論

前章では、重力場をフェルミオン場へ結合する多脚場形式について議論した。多脚場形式を用いると、重力

場の超対称性パートナーであるフェルミオン場を同時に記述することができる。そしてそれらの場を用いて、

超対称性を持つ理論、すなわち超変換に対して不変な理論を構築することができる。この章では、まずそのよ

うな理論の中で最も単純なモデルである、時空の次元D = 4、含まれる超対称性の数N = 1 Poincaré超重力

理論について議論する。その後、本論文の目的である、D = 4、N = 1 AdS 超重力理論について議論する。

Poincaré超重力理論は、AdS 超重力理論に含まれ、後に示すパラメータm = 0 の場合の AdS 超重力理論に

一致する。

3.1 N = 1 Poincaré超重力理論

2.4節でみたように、超対称性を持つ理論を構成するには、場を超多重項の形で導入することが必要である。

超対称性を持つ理論の中で簡単な例として知られているものでは、Wess-Zumino 模型や、Maxwell 場を含ん

だ超Maxwell 理論などがある。ここではこれらについては詳細に議論しないが、これらの理論に用いられる

超変換のパラメータとしては、定数Majorana スピノール ϵα を用いて変換されることが知られていて、その

意味で、大域的超対称性を持つ理論とよばれている。一般に場の理論において、理論が大局的な内部対称性を

持つ場合は、ゲージ場を導入することによって、変換のパラメータが時空の座標に依存するような局所的な

変換に対して不変になるような理論を構成することができた。(身近な例では大局的 U(1)不変性を持つ理論

にゲージ場としてベクトル場を導入することで、局所的 U(1)変換に対し不変な理論を作ることができるので

あった。)これと同様に、大域的超対称性を持つ理論に超対称性のゲージ場を導入して、局所超対称性をもつ

理論を構成することを考える。

超変換のパラメータはスピノル ϵα (α = 1, 2, 3, 4) であるので、それに対するゲージ場はスピノル添字 αと

ベクトル添字 µの両方を持つ場 ψµα(x)であると考えられる。そのような場は、Rarita-Schwinger 場と呼ば

れ、量子化するとスピン 3/2の粒子を表すことが知られている。局所超対称性を持つ理論を構成するためには

さらに別のゲージ場も必要になる。超 Poincaré代数の交換関係 (2.48)から、2つの超電荷の反交換子が時空

並進の生成子になることがわかる。したがって、局所超対称性を持つ理論は局所的な時空並進対称性も持って

いなければならない。一般に時空並進のパラメータは ξa (a = 1, 2, 3, 4)と表される。局所的な時空並進とは、

一般座標変換のことであるので、それに対するゲージ場として、多脚場で記述される重力場 eµ
a が導入され

る。また重力場はスピン 2を持つことが知られている。

このような一般座標変換と局所超変換に対し不変な理論を超重力理論 (supergravity) という。超重力理

論に含まれる場は、スピン 2 の重力場 eµ
a(x) と、その超対称性パートナーであるスピン 3/2 の Majorana

Rarita-Schwinger 場 ψµ(x) である。これは (2.61) でみた超 Poincaré 代数の超重力多重項のスピンの組み

合わせであるので、これらを用いて局所超対称性を持つ理論を構成することができる。この理論は D = 4、

N = 1超重力理論とよばれる。

D = 4、N = 1超重力理論には、重力場 eµ
a と 1つのMajorana Rarita-Schwinger 場 ψµα が含まれてい

る。また便宜のため、Rarita-Schwinger場のスピノル添字 αについては必要のない限りは省略して ψµ のよ

うにあらわす。Rarita-Schwinger 場は、 Majorana 条件 ψcµ = ψµ を満たす。この超重力理論におけるラグ

ランジアンは、 Einstein 項と Rarita-Schwinger 項からなり、
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L = eR̂− 1

2
eψ̄µγ

µνρD̂νψρ (3.1)

で与えられる。ここでガンマ行列 γµ は、

γµ(x) = γaea
µ(x) (3.2)

で定義され、多脚場を通して座標依存性を持つ。また γµνρ = γ[µγνγρ] は、ガンマ行列の反対称積である。

Rarita-Schwinger 場の Dirac共役 ψ̄µ は ψ̄µ ≡ ψ†µiγ0 で定義される。ただしこの定義に用いられる γ0 は定数

行列 γa=0 である。曲率と共変微分は、

R̂ = ea
µeb

νR̂ ab
µν

R̂ ab
µν = ∂µω̂

ab
ν − ∂ν ω̂ ab

µ + ω̂ a
µ cω̂

cb
ν − ω̂ a

ν cω̂
cb
µ

D̂[νψρ] =

(
∂[ν +

1

4
ω̂ ab
[ν γab

)
ψρ]

(3.3)

と定義される。共変微分について、アフィン接続の項が無いのは、ラグランジアン (3.1) に含まれる γµνρ

により、共変微分に関わる添字 ν, ρ は反対称化されているので、反対称化して定義することで、アフィ

ン接続を導入せずともテンソルとして変換するからである。これはちょうど電磁気学における場の強さ

Fµν = ∂µAν − ∂νAµ がテンソルとして変換すること本質的に同じである。またスピン接続 ω̂ ab
µ は、以下で

与えられる。

ω̂µab = ωµab +
1

8
(ψ̄aγµψb + ψ̄µγaψb − ψ̄µγbψa) (3.4)

ここで ωµab は捩率なしのスピン接続 (2.26)である。この ω̂ ab
µ は、後述するが、後に都合がよくなるよう再定

義されたものである。そのため当然元の ωµab を用いてラグランジアン (3.1)を表すこともでき、その場合は

フェルミオンの 4体相互作用項が加わる。またスピン接続を (3.4)で定義したことで、Rarita-Schwinger 場

に依存した捩率をもつようになる。

D̂µeν
a − D̂νeµ

a = Dµeν
a −Dνeµ

a +
1

8
(ψ̄aγµψb + ψ̄µγaψb − ψ̄µγbψa)eνb − (µ↔ ν)

=
1

8
ψ̄µγaψν +

1

8
((((((((((
ψ̄aγµψν + ψ̄aγνψµ)− (µ↔ ν)

=
1

8
ψ̄µγ

aψν −
1

8
ψ̄νγ

aψµ =
1

4
ψ̄µγ

aψν

(3.5)

2、3番目の等号において、一般のMajorana スピノル ψ, λの双一次形式に対する対称性

ψ̄γaλ = −λ̄γaψ (3.6)

を用いた。

ラグランジアン (3.1)から構成される作用は、次の 3つの無限小局所変換に対して不変である。

(i)一般座標変換

δG(ξ)eµ
a = ξν∂νeµ

a + ∂µξ
νeν

a

δG(ξ)ψµ = ξν∂νψµ + ∂µξ
νψν

(3.7)
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(ii)局所 Lorentz 変換

δL(λ)eµ
a = −λabeµb

δL(λ)ψµ = −1

4
λabγabψµ

(3.8)

(iii)局所超変換

δQ(ϵ)eµ
a =

1

4
ϵ̄γaψµ

δQ(ϵ)ψµ = D̂µϵ ≡
(
∂µ +

1

4
ω̂ ab
µ γab

)
ϵ

(3.9)

変換のパラメータ ξµ(x) , λab(x)(λ
ab = −λba) , ϵα(x)(ϵc = ϵ)は、時空の座標 xµ の任意関数である。(3.1)

の表式から、ラグランジアンは一般座標変換と局所 Lorentz 変換に対しては、添字が縮約されているため、明

示的に不変である。局所超変換 (iii)に対する不変性は次節にてまとめて示す。これらの局所変換の交換関係

を計算すると、

[δG(ξ1), δG(ξ2)] = δG(ξ2 · ∂ξ1 − ξ1 · ∂ξ2)
[δL(λ1), δL(λ2)] = δL([λ1, λ2])

[δG(ξ), δL(λ)] = δL(−ξ · ∂λ)
[δG(ξ), δQ(ϵ)] = δQ(−ξ · ∂ϵ)

[δL(λ), δQ(ϵ)] = δQ(
1

4
λabγabϵ)

[δQ(ϵ1), δQ(ϵ2)] = δG(ξ) + δL(λ) + δQ(ϵ)

(3.10)

となり、再び 3つの局所変換を使って表すことができるので、閉じた代数をつくっている。こちらの計算も、

次節にてまとめて示すこととする。ただし、Rarita-Schwinger 場 ψµ に対する局所超変換の交換関係 [δQ, δQ]

については、付録 B にて示してある。またここで最後の交換関係 [δQ, δQ] の右辺に現れる変換パラメータ

ξ , λ , ϵは、

ξµ =
1

4
ϵ̄2γ

µϵ1 λab = −ξ · ω̂ = −ξµω̂µab ϵ = −ξ · ψ = −ξµψµ (3.11)

と定義される。また、付録 Bから、この代数はオン・シェルでのみ閉じることが確かめられるが、今考えて

いる理論においては、物理的自由度をもたないいくつかの補助場を導入することで、場の方程式を使わずにオ

フ・シェルで閉じる代数を構成できることが知られている。しかし、一般的な超重力理論 (拡張された超対称

性 (N ≥ 2) を持つ理論や高次元時空での理論) においては、そのようなオフ・シェルの定式化は知られてい

ない。

ラグランジアン (3.1)から導かれる場の方程式は、Minkowski 時空

eµ
a = δaµ ψµ = 0 (3.12)

を解に持っている。解 (3.12)を不変に保つような一般座標変換と局所 Lorentz 変換は、前章で議論したよう

に、(2.43)をパラメータとするような Poincaré変換である。また、この解を不変に保つ局所超変換は、

δQψµ = ∂µϵ = 0 (3.13)
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であるので、これは定数スピノール ϵによる変換である。(ψµ = 0より、δQeµa = 0は自動的に成立する。)

一般に、Minkowski 時空を場の方程式の解としてもつ超重力理論を Poincaré超重力理論という。

また、この理論は、局所的対称性のほか大域的対称性も持っており、ラグランジアン (3.1)は、変換のパラ

メータ Λが定数であるような大域的カイラル U(1)変換

δeµ
a = 0 δψµ = iΛγ5ψµ (3.14)

に対して不変である。ここで γ5 = iγ0γ1γ2γ3 である。(γ5 に含まれる γ0, · · · , γ3 は全て定数行列により定義
される。)実際に確かめると、ψ̄µ に対しては δψ̄µ = iΛψ̄µγ5 となるので、

δL = −1

2
eδ(ψ̄µγ

µνρD̂νψρ)

= −1

2
eδψ̄µγ

µνρ

(
∂ν +

1

4
ω̂ ab
ν γab

)
ψρ −

1

2
eψ̄µγ

µνρ

(
∂ν +

1

4
ω̂ ab
ν γab

)
δψρ

= − i
2
eΛψ̄µγ5γ

µνρ

(
∂ν +

1

4
ω̂ ab
ν γab

)
ψρ −

i

2
eΛψ̄µγ

µνρ

(
∂ν +

1

4
ω̂ ab
ν γab

)
γ5ψρ

= − i
2
eΛψ̄µγ5γ

µνρD̂νψρ +
i

2
eΛψ̄µγ5γ

µνρD̂νψρ = 0

(3.15)

となり、大域的カイラル変換に対し (3.1)は不変であることがわかる。ここで 3番目から 4番目の等号へは、

γ5 がガンマ行列の反対称積 γµνρ と γab に対し含まれる添字の数だけ反交換することを用いた。単純な大域的

U(1)変換 δψµ = iΛψµ は ψµ に対するMajorana 条件と矛盾するが、このカイラル変換は矛盾しない。

3.2 N = 1 AdS 超重力理論

N = 1 Poincaré超重力理論のラグランジアン (2.1)に宇宙項を加えた理論を考えることができる。そのラ

グランジアンは、

L = eR̂+ 6m2e− 1

2
eψ̄µγ

µνρD̂νψρ +
1

2
meψ̄µγ

µνψν (3.16)

で与えられる。第 2項が宇宙項であり、前章の (2.1)のラグランジアンと比べると、負の宇宙定数 Λ = −3m2

をもつことが分かる。最後の項は、Rarita-Shwinger 場の質量項であり、パラメータ mに比例している。上

の表式からすぐわかるように、m = 0では、Poincaré超重力理論と一致する。またパラメータmを純虚数と

すると、宇宙定数が正になるが、その分 Rarita-Shwinger 場の質量項が実数でなくなってしまうため、負の場

合のみを考える。

さて、この (3.16)で示したラグランジアンは、一般座標変換 (3.7)、また局所 Lorentz 変換 (3.8)に対し不

変である。これらはその表式から明らかである。またラグランジアン (3.16)を不変に保つような局所超変換

は、(3.9)と比べて質量項を加えたことによってmに比例した項が加わり、

δQeµ
a =

1

4
ϵ̄γaψµ

δQψµ = D̂µϵ+
1

2
mγµϵ

(3.17)

となる。以下で、前節で述べたように、この局所超変換に対する作用の不変性、また (3.10)で示した局所変換

の交換関係が閉じた代数をつくっていることをパラメータmを含めた形で実際に示していく。
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3.2.1 局所超変換に対する作用の不変性

実際にこれらの超変換 (3.17)に対して (3.16)のラグランジアンから構成される作用が不変であることを示

す。そのためにまずこれからの式変形においてよく用いる式をあらかじめ示しておく。まず、多脚場の行列式

e = det(eµ
a)は完全反対称テンソルを用いて、

e = − 1

4!
ϵµνρσϵabcdeµ

aeν
beρ

ceσ
d (3.18)

と表される。ここで ϵµνρσ はテンソル密度であり、(3.18)から

ϵµνρσ = eϵabcdea
µeb

νec
ρed

σ (3.19)

である。局所 Lorentz 添字の完全反対称テンソルについては、

ϵ0123 = +1 ϵ0123 = −1 (3.20)

と選ぶ。

次に任意の 4つのスピノール ψ, ξ, λ, ϕに対して、次の変換が成立する。

ψ̄ξλ̄ϕ = −1

4

[
ψ̄ϕλ̄ξ + ψ̄γaϕλ̄γaξ −

1

2
ψ̄γabϕλ̄γabξ

−ψ̄γaγ5ϕλ̄γaγ5ξ + ψ̄γ5ϕλ̄γ5ξ
] (3.21)

これを Fierz 恒等式という。また、一部は (3.6)で与えたが、任意のMajorana スピノール ψ, λの双一次形

式には、次の対称性がある。

ψ̄λ = λ̄ψ

ψ̄γaλ = −λ̄γaψ

ψ̄γabλ = −λ̄γabψ
ψ̄γaγ5λ = λ̄γaγ5ψ

ψ̄γ5λ = λ̄γ5ψ

(3.22)

Rarita-Schwinger 場の双一次形式において、場のベクトル添字が反対称化されている場合、スピノルの入れ替

えに対して+の符号が出る 1、4、5番目は、1番目を例とすると ϵµνρσψ̄µψν = ϵµνρσψ̄νψµ = −ϵµνρσψ̄µψν = 0

のようにゼロとなる。この性質はこれからの計算に大いに役立つ。これらの式を以下では適宜用いて、式変形

を行う。

まず、ラグランジアン (3.16)を、

L = eR̂︸︷︷︸
LE

+6m2e︸ ︷︷ ︸
LΛ

− 1

2
eψ̄µγ

µνρD̂νψρ︸ ︷︷ ︸
LRS

+
1

2
meψ̄µγ

µνψν︸ ︷︷ ︸
LRSmass

(3.23)

と分ける。LE と LRS について、以下のように変形する。
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LE = eea
µeb

νR̂ ab
µν

= − 1

4!
ϵρσλτ ϵcdefeρ

ceσ
deλ

eeτ
fea

µeb
νR̂ ab

µν

= −1

4
ϵρσµνϵcdabeρ

ceσ
dR̂ ab

µν

= −1

4
ϵµνρσϵabcdeρ

ceσ
dR̂ ab

µν

(3.24)

1番目のから 2番目の等号へは (3.18)、2番目から 3番目へは、eaµebν に含まれる添字が、完全反対称テンソ

ルに含まれる 4つずつの添字のいずれか 2つと重複することを用いた。その重複の仕方の数は 4C2 = 6通り

である。また LRS については、

LRS = −1

2
eea

µeb
νec

ρψ̄µγ
abcD̂νψρ

= −1

2

(
− 1

4!

)
ϵσλτδϵdefgeσ

deλ
eeτ

feδ
gea

µeb
νec

ρψ̄µγ
abcD̂νψρ

=
1

12
ϵµνρσϵabcdeσ

dψ̄µγ
abcD̂νψρ

=
1

12
ϵµνρσϵabcdeσ

dψ̄µiϵ
abceγeγ5D̂νψρ

=
1

2
iϵµνρσψ̄µγσγ5D̂νψρ

=
1

2
iϵµνρσψ̄µγνγ5D̂ρψσ

(3.25)

と変形する。ここで 3番目から 4番目の等号へは γabc = iϵabceγeγ5、4番目から 5番目へは ϵabcdϵabce = −6δde
を用いた。ここで LE の Riemann テンソル R̂ ab

µν 、LRS の共変微分 D̂ρ は、スピン接続 ω̂ ab
µ を通してのみ

四脚場 eµ
a に依存している。実は、作用を eµ

a、ψµ、ω̂ ab
µ の汎関数とみなすと、スピン接続 (2.4)は、次の方

程式

δ

δω̂µab

∫
d4xL(eµa, ψµ, ω̂ ab

µ ) = 0 (3.26)

を満たす。したがって超変換に対する作用の変化を調べるときは、スピン接続の変分を無視できるのである。

そのためにスピン接続を (3.4)のように定義したのである。このことをこれから具体的に確かめる。まず LE

を ω̂ ab
µ について変分を取る。Riemann テンソルの表式 (3.3)より、

δLE = −1

4
ϵµνρσϵabcdeρ

ceσ
d(∂µδω̂

ab
ν + δ(ω̂ a

µ eω̂
eb
ν )− (µ↔ ν))

= −1

2
ϵµνρσϵabcdeρ

ceσ
d(∂µδω̂

ab
ν + δ(ω̂ a

µ eω̂
eb
ν ))

(3.27)

と表される。まず括弧内第 1項について変形する。このとき部分積分に伴う全微分項は無視する。
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第 1項 =
1

2
ϵµνρσϵabcdeρ

ceσ
d∂νδω̂

ab
µ = −1

2
ϵµνρσϵabcd∂ν(eρ

ceσ
d)δω̂ ab

µ

= −1

2
ϵµνρσϵabcd(eσ

d∂νeρ
c + eρ

c∂νeσ
d) = −ϵµνρσϵabcdeσd(∂νeρc)δω̂ ab

µ

= ϵµνρσϵabcdeσ
d(ω c

ν eeρ
e)δω̂ ab

µ = eϵfgedϵabcdef
µeg

νω c
ν eδω̂

ab
µ

= e(ea
µec

νω c
ν b + ec

µeb
νω c

ν a − ecµeaνω c
ν b − ebµecνω c

ν a)δω̂
ab
µ

= 2e(ec
µeb

νω c
ν a + ea

µec
νω c

ν b)δω̂
ab
µ

(3.28)

ここで 3行目では (2.28)を用い、3行目から 4行目は ϵfgedϵabcd = −3!δ[fa δgb δ
e]
c を用いた。また第 2項も同様

に変形すると、

第 2項 = −1

2
ϵµνρσϵabcdeρ

ceσ
d(ω̂ eb

ν δω̂ a
µ e + ω̂ a

µ eδω̂
eb
ν )

= −ϵµνρσϵabcdeρceσdω̂ b
νe δω̂

ae
µ = −ϵµνρσϵaecdeρceσdω̂ e

νb δω̂
ab
µ

= −eϵfgcdϵaecdefµegν ω̂ e
νb δω̂

ab
µ = 2e(ea

µee
ν ω̂ e

νb − eeµeaν ω̂ e
νb )δω̂

ab
µ

= −2e(eaµecν ω̂ c
ν b + ec

µeb
ν ω̂ c

ν a)δω̂
ab
µ

(3.29)

とできる。したがって、(3.27)、(3.28)から、

δLE = 2eec
µeb

ν(ω c
ν a − ω̂ c

µ a)δω̂
ab
µ + 2eea

µec
ν(ω c

ν b − ω̂ c
µ b)δω̂

ab
µ (3.30)

を得る。

同様に LRS も ω̂ ab
µ について変分を取る。

δLRS =
1

2
iϵµνρσψ̄µγνγ5δD̂ρψσ =

i

8
ϵµνρσψ̄µγνγ5γabψσδω̂

ab
ρ

=
i

8
ϵµνρσeµ

ceσ
dψ̄cγνγ5γabψdδω̂

ab
ρ = − i

8
ϵµνρσeρ

ceσ
deν

eψ̄cγeγ5γabψdδω̂
ab
µ

(3.31)

ここで、

γeγabγ5 = (γeab + 2ηe[aγb])γ5 = −iϵeabfγf + 2ηe[aγb]γ5 (3.32)

であり、γaγ5 に比例する項は、双一次形式に対し (3.22) の対称性、ρσ の反対称性から消える。これより、

(3.31)は、
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δLRS = −1

8
ϵµνρσϵeabfeν

eψ̄ργ
fψσδω̂

ab
ρ =

1

8
eϵeghiϵeabfeg

µeh
ρei

σψ̄ργ
fψσδω̂

ab
µ

= −1

8
e
(
ea
µψ̄bγ

σψσ + eb
µψ̄ργ

ρψa + ψ̄aγ
µψb − ebµψ̄aγσψσ − eaµψ̄ργρψb − ψ̄bγµψa

)
δω̂ ab

µ

=
1

4
e
(
eb
µψ̄aγ

σψσ + ea
µψ̄ργ

ρψb + ψ̄bγ
µψa

)
δω̂ ab

µ

= e

{
1

4
ea
µec

ν(ψ̄cγνψb + ψ̄νγ
cψb − ψ̄νγbψc) +

1

4
ec
µeb

ν(ψ̄cγνψa + ψ̄νγ
cψa − ψ̄νγaψc)

−1

4
ea
µec

νψ̄νγ
cψb −�������1

4
ec
µeb

νψ̄cγνψa−
1

4
ec
µeb

νψ̄νγ
cψa

:::::::::::::::

��������
+
1

4
ec
µeb

νψ̄νγ
aψc+

1

4
ea
µψ̄ργ

ρψb+
1

4
ψ̄bγ

µψa
:::::::::

}
δω̂ ab

µ

= 2eec
µeb

ν(ω̂ c
ν a − ω c

µ a)δω̂
ab
µ + 2eea

µec
ν(ω̂ c

ν b − ω c
µ b)δω̂

ab
µ

(3.33)

となる。下線部、波線部どうしはそれぞれ相殺され、斜線部どうしも (3.22)、a, bの反対称性を使うと相殺す

る。したがって、ω̂ ab
µ の変分に対し、全微分の項を除いて δLE + δLRS = 0、すなわち δL = 0であるので、

作用が ω̂ ab
µ の変化分には依らないため、(3.26)式が確かに成立していることが確かめられた。

したがって、局所超変換に対する不変性をみるには、ラグランジアンの中のあらわな eµ
a, ψµ に対してのみ

の変分を調べればよい。それに先立ち、多脚場の行列式 eに対する変分の形を先に求めておく。

δe = δ
√
−g =

1

2
egµνδgµν =

1

2
e(eµaea

ν)δ(eµ
beνb) =

1

2
eeµaea

ν(eνbδeµ
b + eµ

bδeνb) = eea
µδeµ

a (3.34)

まず δQLE から計算する。

δQLE = δQ(eea
µeb

ν)R̂ ab
µν = (δQe)ea

µeb
νR̂ ab

µν + 2eeb
ν(δQea

µ)R̂ ab
µν

=
1

4
eec

ρϵ̄γcψρR̂−
1

2
eeb

ν ϵ̄γaψ
µR̂ ab

µν

=
1

4
eeµ

aϵ̄γµψaR̂−
1

2
eeρaeb

ν ϵ̄γρψµR̂ ab
µν

(3.35)

ここで 1行目においては (2.17)から求まる ea
µ に対する局所超変換 δQea

µ = − 1
4 ϵ̄γaψ

µ を用いている。また

最終行第 2項において、Riemann テンソルの対称性、

eρaeb
νR̂ ab

µν = R̂ ν
µνρ = R̂ ν

ρνµ = eµaeb
νR̂ ab

ρν (3.36)

を用いると、(3.35)は、

δQLE = −1

2
eϵ̄γµψa

(
eb
νR̂ ab

µν − 1

2
eµ
aR̂

)
(3.37)

のようにまとまる。

次に LRS の変分を考える。その際 ψ̄µ に対して変分をとるが、具体的な表式は (3.17)より求まり、

δQψ̄µ = ϵ̄

(
←−
∂µ −

1

4
ω̂ ab
µ γab

)
︸ ︷︷ ︸

≡
←−
D̂µ

−1

2
mϵ̄γµ = ϵ̄

←−
D̂µ −

1

2
mϵ̄γµ = D̂µϵ̄−

1

2
mϵ̄γµ (3.38)
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ここで表記上 ϵ̄
←−
D̂µ = D̂µϵ̄と表すこととする。したがって、LRS の変分は (3.25)の最後の表式を用いること

にすると、

δQLRS =
1

2
iϵµνρσ

(
δQψ̄µγνγ5D̂ρψσ + ψ̄µγνγ5D̂ρδQψσ + δQeν

aψ̄µγaγ5D̂ρψσ

)
=

1

2
iϵµνρσ

(
D̂µϵ̄γνγ5D̂ρψσ + ψ̄µγνγ5D̂ρD̂σϵ+ δQeν

aψ̄µγaγ5D̂ρψσ

)
+

1

2
iϵµνρσ

(
−1

2
mϵ̄γµγνγ5D̂ρψσ +

1

2
mψ̄µγνγ5D̂ρ(γσϵ)

) (3.39)

と求まる。ここで (3.39)2行目の最初の項は、部分積分をして表面項を落とすと、

1

2
iϵµνρσD̂µϵ̄γνγ5D̂ρψσ = −1

2
iϵµνρσ ϵ̄γνγ5D̂µD̂ρψσ −

1

2
iϵµνρσD̂µeν

aϵ̄γaγ5D̂ρψσ (3.40)

と変形できる。このように変形すると、(3.39)2 行目の括弧内第 3 項と (3.40) 右辺第 2 項が相殺する。それ

は、(3.39)2行目の括弧内第 3項に対し Fierz 恒等式 (3.21)を用いればわかる。

1

2
iϵµνρσδQeν

aψ̄µγaγ5D̂ρψσ

=
1

8
iϵµνρσ ϵ̄γaψνψ̄µγaγ5D̂ρψσ

= − 1

32
iϵµνρσ

(
ϵ̄γaγ5D̂ρψσψ̄µγ

aψν + ϵ̄γbγaγ5D̂ρψσψ̄µγ
bγaψν −

1

2
ϵ̄γbcγaγ5D̂ρψσψ̄µγbcγ

aψν

−ϵ̄γbγ5γaγ5D̂ρψσψ̄µγbγ5γ
aψν +

�����������:0

ϵ̄γ5γaγ5D̂ρψσψ̄µγ5γ
aψν


(3.41)

最後の項は双一次形式の対称性 (3.22)より消える。括弧内第 2、3、4項について整理する。

括弧内第 2項 = ϵ̄(γba + ηba)γ5D̂ρψσψ̄µ(γ
ba + ηba)ψν = ϵ̄γbaγ5D̂ρψσψ̄µγ

baψν +��������:0
4ϵ̄γ5D̂ρψσψ̄µψν

= ϵ̄

(
− i
2
ϵbacdγ

cd

)
D̂ρψσψ̄µγ

baψν = − i
2
ϵabcdϵ̄γ

cdD̂ρψσψ̄µγ
abψν

= − i
2
ϵabcdϵ̄γ

abD̂ρψσψ̄µγ
cdψν

(3.42)

ここでガンマ行列について γaγb = γab + ηab、γabγ5 = − i
2ϵabcdγ

cd を用いた。

括弧内第 3項 = −1

2
ϵ̄γbcγaγ5D̂ρψσψ̄µγbcγaψν

= −1

2
ϵ̄(γbca + ηacγb − ηabγc)γ5D̂ρψσψ̄µ( γbca︸︷︷︸

∝ γaγ5

+ηacγb − ηabγc)ψν

=
1

2

{
ϵ̄(4γb)γ5D̂ρψσψ̄µγbψν − ϵ̄γbγ5D̂ρψσψ̄µγbψν

−ϵ̄γbγ5D̂ρψσψ̄µγbψν + ϵ̄(4γb)γ5D̂ρψσψ̄µγbψν

}
= −3ϵ̄γbγ5D̂ρψσψ̄µγ

bψν

(3.43)
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括弧内第 4項 = ϵ̄γbγaD̂ρψσψ̄µγbγ5γaψν = −ϵ̄(γba + ηba)D̂ρψσψ̄µ(γba + ηab)γ5ψν

= −ϵ̄γbaD̂ρψσψ̄µ

(
− i
2
ϵbacdγ

cd

)
ψν

=
i

2
ϵabcdϵ̄γ

abD̂ρψσψ̄µγ
cdψν

(3.44)

したがって、括弧内第 2、4項は相殺し、(3.41)の表式は、整理すると、

1

8
iϵµνρσ ϵ̄γaψνψ̄µγaγ5D̂ρψσ =

1

16
iϵµνρσ ϵ̄γaγ5D̂ρψσψ̄µγ

aψν

=
1

4
iϵµνρσ ϵ̄γaγ5D̂ρψσ(D̂µeν

a − D̂νeµ
a) =

1

2
iϵµνρσD̂µeν

aϵ̄γaγ5D̂ρψσ

(3.45)

よって、この項は (3.40)右辺第 2項と相殺する。したがって δQLRS で残ったのは、(3.39)2行目第 2項、3行

目、(3.40)右辺第 1項であり、

δQLRS = −1

4
iϵµνρσ ϵ̄γνγ5

[
D̂µ, D̂ρ

]
ψσ +

1

4
iϵµνρσψ̄µγνγ5

[
D̂ρ, D̂σ

]
ϵ

+
1

2
iϵµνρσ

(
−1

2
mϵ̄γµγνγ5D̂ρψσ +

1

2
mψ̄µγνγ5D̂ρ(γσϵ)

) (3.46)

のようにまとまる。ここで右辺第 1行目は、任意のスピノルに対して成立する (2.35)に対応する共変微分の

交換関係

[
D̂µ, D̂ρ

]
ψ =

1

4
R̂ ab
µρ γabψ (3.47)

を用いると変形できる。

第 1行目 = − 1

16
iϵµνρσR̂ ab

µρ ϵ̄γνγ5γabψσ +
1

16
iϵµνρσR̂ ab

ρσ ψ̄µγνγ5γabϵ (3.48)

ここで

γνγ5γab = eν
cγcγabγ5 = eν

c(γcab + 2ηc[aγb])γ5 = eν
c(−iϵcabdγd + 2ηc[aγb]γ5) (3.49)

であり、γbγ5 に比例する項は双一次形式の対称性 (3.22)を用いれば相殺される。よって (3.48)は、

第 1行目 = − 1

16
iϵµνρσR̂ ab

ρσ

(
−2iϵabcdeνcϵ̄γdψµ

)
= −1

8
ϵµνρσϵabcdeν

cR̂ ab
ρσ ϵ̄γdψµ

=
1

8
eϵcefgϵcabdee

µef
ρeg

σR̂ ab
ρσ ϵ̄γdψµ

= −1

8
e
(
eb
ρR̂ ab

ρσ ϵ̄γσψa + ea
σR̂ ab

ρσ ϵ̄γρψb + ed
µR̂ϵ̄γdψµ

−eaρR̂ ab
ρσ ϵ̄γσψb − ebσR̂ ab

ρσ ϵ̄γρψa + ed
µR̂ϵ̄γdψµ

)
= −1

8
e
(
−4eaρR̂ ab

ρσ ϵ̄γσψb + 2eµ
dR̂ϵ̄γµψd

)
(3.50)

となり、これはノーテーションを整えてゆくと、(3.37)より、
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第 1行目 =
1

2
eϵ̄γµψa

(
eb
νR̂ ab

µν − 1

2
eµ
aR̂

)
= −δQLE (3.51)

となり、(3.46)の第 1行目は δQLE と相殺することが分かる。したがって、今までの議論をまとめると、

δQ(LE + LRS) =
1

2
iϵµνρσ

(
−1

2
mϵ̄γµγνγ5D̂ρψσ +

1

2
mψ̄µγνγ5D̂ρ(γσϵ)

)
(3.52)

と整理できる。m = 0のときは δQ(LE +LRS) = 0となるので、Poincaré超重力理論のラグランジアン (3.1)

の局所超変換に対する不変性はここで示されたことになる。

(3.52)を括弧内第 2項を部分積分してさらに変形させる。

δQ(LE + LRS) =
1

2
iϵµνρσ

(
−1

2
mϵ̄γµγνγ5D̂ρψσ −

1

2
mD̂ρψ̄µγνγ5γσϵ−

1

2
mD̂ρeν

aψ̄µγaγ5γσϵ

)
(3.53)

括弧内第 3項は、(3.5)を用いると、

−1

4
imϵµνρσD̂[ρeν]

aψ̄µγaγ5γσϵ = −
1

32
imϵµνρσψ̄ργ

aψνψ̄µγaγ5γσϵ (3.54)

右辺の双一次形式の形をみると、(3.41) の 2 番目の等号の形と比べて構造が同じであることが分かる。した

がって (3.41)の Fierz 恒等式の結果をそのまま使えるので、その結果は、

− 1

32
imϵµνρσψ̄ργ

aψνψ̄µγaγ5γσϵ = −
1

32
imϵµνρσ

(
−1

4

)(
−2ψ̄ργaγ5γσϵψ̄µγaψν

)
=

1

2

(
− 1

32
imϵµνρσψ̄ργ

aψνψ̄µγaγ5γσϵ

)
= 0

(3.55)

となる。(3.53)括弧内第 1、2項に含まれる γµγνγ5 (γνγ5γσ = −γνγσγ5)は

γµγνγ5 = eµ
aeν

b

(
−1

2
iϵabcdγ

cd

)
+ gµνγ5 (3.56)

と変形でき、そのうち gµν の項は、双一次形式の対称性 (3.22)により第 1、2項で相殺する。よって (3.53)は

δQ(LE + LRS) = −
1

8
mϵµνρσϵabcd(eµ

aeν
bϵ̄γcdD̂ρψσ − eνaeσbD̂ρψ̄µγ

cdϵ)

= −1

8
mϵµνρσϵabcd(eµ

aeν
bϵ̄γcdD̂ρψσ + eν

aeσ
bϵ̄γcdD̂ρψµ)

= −1

4
mϵµνρσϵabcdeµ

aeν
bϵ̄γcdD̂ρψσ

(3.57)

と整理される。

次に、(3.57)を相殺する項を調べるため、LRSmass についての変分を調べる。そのためにまず LRSmass を以

下の形に変形させておく。

LRSmass =
1

2
meψ̄µγ

µνψν =
1

2
meea

µeb
νψ̄µγ

abψν

= − 1

48
mϵρσλδϵcdefeρ

ceσ
deλ

eeδ
fea

µeb
νψ̄µγ

abψν

= −1

8
mϵρσµνϵcdabeρ

ceσ
dψ̄µγ

abψν = −1

8
mϵµνρσϵabcdeρ

ceσ
dψ̄µγ

abψν

(3.58)
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したがって δQLRSmass は、

δQLRSmass = −
1

8
mϵµνρσϵabcd

{
2(δQeρ

c)eσ
dψ̄µγ

abψν + eρ
ceσ

dδQψ̄µγ
abψν + eρ

ceσ
dψ̄µγ

abδQψν
}

= − 1

16
mϵµνρσϵabcdeσ

dϵ̄γcψρψ̄µγ
abψν︸ ︷︷ ︸

1⃝

−1

4
mϵµνρσϵabcdeρ

ceσ
dψ̄µγ

abD̂νϵ

+ (mの 2次の項)

(3.59)

と表される。mの 1次の項からまず考える。2行目第 2項は、部分積分をすると、

− 1

4
mϵµνρσϵabcdeρ

ceσ
dψ̄µγ

abD̂νϵ

=
1

4
mϵµνρσϵabcd(eρ

ceσ
dD̂νψ̄µγ

abϵ+ 2eσ
dD̂[νeρ]

cψ̄µγ
abϵ)

= −1

4
mϵµνρσϵabcdeρ

ceσ
dϵ̄γabD̂νψµ +

1

16
mϵµνρσϵabcdeσ

dψ̄νγ
cψρψ̄µγ

abϵ

=
1

4
mϵµνρσϵabcdeµ

aeν
bϵ̄γcdD̂ρψσ −

1

16
mϵµνρσϵabcdeσ

dϵ̄γabψµψ̄νγ
cψρ︸ ︷︷ ︸

2⃝

(3.60)

このうち第 1項は (3.57)の δQ(LE +LRS)と相殺することが分かる。あとは 1⃝と 2⃝が相殺するかを確かめる。
− i

2ϵabcdγ
ab = γcdγ5 から以下の形になる。

1⃝+ 2⃝

= −1

8
imϵµνρσeσ

dϵ̄γcψρψ̄µγcdγ5ψν −
1

8
imϵµνρσeσ

dϵ̄γcdγ5ψµψ̄νγ
cψρ

= −1

8
imϵµνρσ ϵ̄γcψρψ̄µγcσγ5ψν −

1

8
imϵµνρσeσ

dϵ̄(γdγc − ηdc)γ5ψνψ̄µγcψρ

= −1

8
imϵµνρσ ϵ̄γcψρψ̄µγcσγ5ψν−

1

8
imϵµνρσ ϵ̄γσγcγ5ψνψ̄µγ

cψρ +
1

8
imϵµνρσ ϵ̄γ5ψνψ̄µγσψρ

(3.61)

ここで下線部は Fierz 恒等式 (3.21)を用いるとゼロとなることが分かる。γ5ψν → ψν と再定義すると、双一

次形式の対称性 (3.22)より残る項は、

ϵµνρσγcψνψ̄µγ
cψρ = −

1

4
ϵµνρσ

[
γcγ

aγcψρψ̄µγ
aψν −

1

2
γcγ

abγcψρψ̄µγ
abψν

]
(3.62)

となり、その中に含まれる γcγ
aγc と γcγ

abγc は

γcγ
aγc = (γca + ηca)γ

c = γca + γa = −γacγc + γa = −γa
∑
c ̸=a

γcγ
c + γa

= −3γa + γa = −2γa
γcγ

abγc = (γcab + ηcaγb − ηcbγa)γc = γcabγ
c + γbγa − γaγb

=
∑
c̸=a,b

γcγ
cγab − 2γab = 2γab − 2γab = 0

(3.63)

であるので、(3.62)から、

25



ϵµνρσγcψνψ̄µγ
cψρ = −

1

2

(
ϵµνρσγcψνψ̄µγ

cψρ
)
= 0 (3.64)

と、確かにゼロとなった。すると (3.61)は

1⃝+ 2⃝ = −1

8
imϵµνρσ(ϵ̄γaψρψ̄µγaσγ5ψν − ϵ̄γ5ψνψ̄µγσψρ) (3.65)

となる。ここで右辺括弧内第 1項に Fierz 恒等式 (3.21)を用いる。

ϵµνρσ ϵ̄γaψρψ̄µγaσγ5ψν

= −1

4
ϵµνρσ

[
ψ̄µγbψρϵ̄γ

aγbγaσγ5ψν −
1

2
ψ̄µγbcψρϵ̄γ

aγbcγaσγ5ψν

]

= −1

4
ϵµνρσ

ψ̄µγbψρϵ̄(2ηab − γb γa)γaσ︸ ︷︷ ︸
=3γσ

γ5ψν −
1

2
ψ̄µγbcψρϵ̄ γ

aγbc(γaγσ︸ ︷︷ ︸
=0 ∵ (3.63)

−eσa)γ5ψν


= −1

4
ϵµνρσ

[
ψ̄µγbψρϵ̄(2η

abγaσ − 3γbγσ)γ5ψν+
1

2
ϵ̄γσγbcγ5ψνψ̄µγ

bcψρ

]
(3.66)

下線部にさらに Fierz 恒等式 (3.21)を用いると、下線部はゼロとなることが分かる。γ5ψν → ψν、γbc → γab

とすると、

ϵµνρσγabψνψ̄µγ
abψρ = −

1

4

[
γabγcγ

abψρψ̄µγ
cψν −

1

2
γabγcdγ

abψρψ̄µγ
cdψν

]
(3.67)

となり、その中の γabγcγ
ab と γabγcdγ

ab は、

γabγcγ
ab = (γabc + ηcbγa − ηcaγb)γab = −γcabγba + ηcb3γ

b + ηca3γ
a

= −γc
∑

a ̸=c,b ̸=a,c

γaγbγ
bγa + 6γc = −γc3 · 2 + 6γc = 0

γabγcdγ
ab = (γcdγab + 4ηbcγad − 4ηbdγac)γ

ab

= −12γcd + 4(−γdγa + ηad)γ
a
c − 4(−γcγa + ηac)γ

a
d

= −12γcd − 12γdγc + 4γdc + 12γcγd − 4γcd = 4γcd +24ηcd︸ ︷︷ ︸
=0 (∵ γcdηcd=0)

(3.68)

と変形できるから、(3.67)は、

ϵµνρσγabψνψ̄µγ
abψρ =

1

2

(
ϵµνρσγabψνψ̄µγ

abψρ
)
= 0 (3.69)

とゼロになり、(3.66)下線部はゼロとなる。また (3.66)について

ηabγaσ = ηab(γaγσ − eσa) = ηab(−γσγa + eσa) = −γσγb + eσ
b

γbγσ = ηab(−γσγa + 2eσa) = −γσγb + 2eσ
b

(3.70)

から、
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ϵµνρσ ϵ̄γaψρψ̄µγaσγ5ψν = −1

4
ϵµνρσψ̄µγbψρϵ̄(−2γσγb + 2eσ

b + 3γσγ
b − 6eσ

b)γ5ψν

= −1

4
ϵµνρσψ̄µγbψρϵ̄( γσγ

b︸︷︷︸
=0 ∵ (3.64)

−4eσb)γ5ψν

= ϵµνρσψ̄µγσψρϵ̄γ5ψν = ϵµνρσ ϵ̄γ5ψνψ̄µγσψρ

(3.71)

となるので、これは (3.65)の第 2項を打ち消す。よって 1⃝+ 2⃝ = 0が成立するので、これでmの 1次の項

は全て相殺されたことになる。したがって、δQ(LE + LRS + LRSmass)で残っている項は (3.59)で略記した

LRSmass 由来のmの 2次の項である。これを (3.59)で計算すると、

δQ(LE + LRS + LRSmass)

=
1

16
m2ϵµνρσϵabcdeρ

ceσ
d(ϵ̄γµγ

abψν − ψ̄µγabγνϵ)

=
1

16
m2ϵµνρσϵabcdeρ

ceσ
d(eµeϵ̄γ

eγabψν − eνeψ̄µγabγeϵ)

=
1

16
m2ϵµνρσϵabcdeρ

ceσ
d
{
eµeϵ̄(γ

eab + ηeaγb − ηebγa)ψν − eνeψ̄µ(γabe + ηbeγa − ηaeγb)ϵ
}

=
1

4
m2ϵµνρσϵabcdeν

beρ
ceσ

dϵ̄γaψµ +
1

8
m2ϵµνρσϵabcdeµeeρ

ceσ
dϵ̄γabeψν

(3.72)

である。ここで 3番目から 4番目の等号へは γabe = −iϵeabfγfγ5、双一次形式の対称性 (3.21)を用いた。ま

た最終行第 2項は、

1

8
m2ϵµνρσϵabcdeµeeρ

ceσ
dϵ̄γabeψν =

1

8
em2ϵfgcdϵabcdηfeϵ̄γ

abeψg

=
1

8
em2(−2δfaδ

g
b + 2δgaδ

f
b )ηfeϵ̄γ

abeψg

=
1

4
em2(ηbeϵ̄γ

abeψa − ηaeϵ̄γabeψb)

= 0

(3.73)

よりゼロとなる。したがって、(3.72)は、

δQ(LE + LRS + LRSmass) =
1

4
m2ϵµνρσϵabcdeν

beρ
ceσ

dϵ̄γaψµ (3.74)

となる。この寄与を相殺するのが LΛ のはずである。実際に確認すると、(3.34)を用いて、

δQLΛ = 6m2δQe = 6m2eea
µδQeµ

a =
3

2
m2eea

µϵ̄γaψµ

= −1

4
m2ϵνρσµϵbcdaeν

beρ
ceσ

dϵ̄γaψµ = −1

4
m2ϵµνρσϵabcdeν

beρ
ceσ

dϵ̄γaψµ

(3.75)

となるので、確かに (3.74)と相殺する。したがって、ラグランジアン (3.23)に対する局所超変換は、全微分

項を除いて

δQL = δQ(LE + LΛ + LRS + LRSmass) = 0 (3.76)

であるため、局所超変換に対し作用は不変に保たれる。
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3.2.2 代数の閉包性

AdS 超重力理論においても、(3.10)で示した局所変換の交換関係は閉じた代数を作っている。それらを以

下で確かめる。ただし、(3.11)で定義したパラメータのうち、λは、質量項の導入により、

λab = −ξµω̂µab −
1

4
mϵ̄2γabϵ1 (3.77)

と変更される。残り 2つのパラメータは共通である。当然こちらも、m = 0では Poincaré超重力理論におけ

る局所変換の交換関係に帰着する。代数が閉じているかをみるには、多脚場 eµ
a と Rarita-Schwinger 場 ψµ

の両方で具体的に確かめればよい。

◦ [δG(ξ1), δG(ξ2)] = δG(ξ2 · ∂ξ1 − ξ1 · ∂ξ2)の証明

[δG(ξ1), δG(ξ2)]eµ
a = δG(ξ1)(ξ2

ν∂νeµ
a + ∂µξ2

νeν
a)− (1↔ 2)

= ξ2
ν∂ν(ξ1

ρ∂ρeµ
a + ∂µξ1

ρeρ
a) + ∂µξ2

ν(ξ1
ρ∂ρeν

a + ∂νξ2
ρeρ

a)− (1↔ 2)

= ξ2
ν∂νξ1

ρ∂ρeµ
a + ξ2

νξ1
ρ∂ν∂ρeµ

a + ξ2
ν∂ν∂µξ1

ρeρ
a

+ ξ2
ν∂µξ1

ρ∂νeρ
a + ∂µξ2

νξ1
ρ∂ρeν

a + ∂µξ2
ν∂νξ1

ρeρ
a − (1↔ 2)

= (ξ2
ν∂νξ1

ρ)∂ρeµ
a + ∂µ(ξ2

ν∂νξ1
ρ)eρ

a

+ ξ2
νξ1

ρ∂ν∂ρeµ
a + ξ2

ν∂µξ1
ρ∂νeρ

a + ∂µξ2
νξ1

ρ∂ρeν
a − (1↔ 2)

= (ξ2 · ∂ξ1ν − ξ1 · ∂ξ2ν)∂νeµa + ∂ν(ξ2 · ∂ξ1ν − ξ1 · ∂ξ2ν)eµa

= δG(ξ2 · ∂ξ1 − ξ1 · ∂ξ2)eµa

(3.78)

4番目の等号の 2行目は、1と 2の交換により相殺される項である。続いて ψµ についてだが、一般座標変換

に対しては、多脚場 eµ
a も Rarita-Schwinger 場 ψµ も共変ベクトルとして変換するので、上の議論がそのま

ま ψµ についても成立する。よって、

[δG(ξ1), δG(ξ2)]ψµ = δG(ξ2 · ∂ξ1 − ξ1 · ∂ξ2)ψµ (3.79)

が成立する。したがって、[δG(ξ1), δG(ξ2)] = δG(ξ2 · ∂ξ1 − ξ1 · ∂ξ2)が成立。

◦ [δL(λ1), δL(λ2)] = δL([λ1, λ2])の証明

[δL(λ1), δL(λ2)]eµ
a = δL(λ1)(−λ2abeµb)− (1↔ 2)

= λ2
a
bλ1

b
ceµ

c − λ1abλ2bceµc

= −[λ1, λ2]aceµ
c = δL([λ1, λ2])eµ

a

(3.80)

[δL(λ1), δL(λ2)]ψµ = δL(λ1)

(
−1

4
λ2
abγabψµ

)
− (1↔ 2)

=
1

16
λ2
abλ1

cdγabγcdψµ −
1

16
λ1
abλ2

cdγabγcdψµ

=
1

16
λ1
abλ2

cd(γcdγab − γabγcd)ψµ

(3.81)

ここで、ガンマ行列について
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γcdγab − γabγcd = 2ηbcγda + 2ηadγcb − 2ηacγdb − 2ηbdγca (3.82)

が成立するので、

[δL(λ1), δL(λ2)]ψµ

=
1

16
(2λ2

dbλ1b
aγda + 2λ2

caλ1a
bγcb − 2λ1

baλ2a
dγbd − 2λ1

abλ2b
cγac)ψµ

=
1

4

{
(λ2λ1)

ab
γab − (λ1λ2)

ab
γab

}
ψµ = −1

4
[λ1, λ2]

ab
γabψµ

= δL([λ1, λ2])ψµ

(3.83)

と変形できる。したがって、[δL(λ1), δL(λ2)] = δL([λ1, λ2])が成立。

◦ [δG(ξ), δL(λ)] = δL(−ξ · ∂λ)の証明

[δG(ξ), δL(λ)]eµ
a

= δG(ξ)(−λabeµb)− δL(λ)(ξν∂νeµa + ∂µξ
νeν

a)

= −λab(ξν∂νeµb + ∂µξ
νeν

b)− ξν∂ν(−λabeµb)− ∂µξν(−λabeνb)

= −λabξν∂νeµb + ξν∂νλ
a
beµ

b + ξνλab∂νeµ
b

= −(−ξ · ∂λ)abeµ
b = δL(−ξ · ∂λ)eµa

(3.84)

[δG(ξ), δL(λ)]ψµ

= δG(ξ)

(
−1

4
λabγabψµ

)
− δL(λ)(ξν∂νψµ + ∂µξ

νψν)

= −1

4
λabγab(ξ

ν∂νψµ + ∂µξ
νψν)− ξν∂ν

(
−1

4
λabγabψµ

)
− ∂µξν

(
−1

4
λabγabψµ

)
=

1

4
ξν∂νλ

abγabψµ = −1

4
(−ξ · ∂λ)abγabψµ = δL(−ξ · ∂λ)ψµ

(3.85)

したがって、[δG(ξ), δL(λ)] = δL(−ξ · ∂λ)が成立。

◦ [δG(ξ), δQ(ϵ)] = δQ(−ξ · ∂ϵ)の証明

[δG(ξ), δQ(ϵ)]eµ
a

= δG(ξ)
1

4
ϵ̄γaψµ − δQ(ϵ)(ξν∂νeµa + ∂µξ

νeν
a)

=
1

4
ϵ̄γa(ξν∂νψµ + ∂µξ

νψν)− ξν∂ν
(
1

4
ϵ̄γaψµ

)
− ∂µξν

(
1

4
ϵ̄γaψν

)
= −1

4
ξν∂ν ϵ̄γ

aψµ =
1

4
(−ξ · ∂ϵ̄)γaψµ = δQ(−ξ · ∂ϵ)eµa

(3.86)
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[δG(ξ), δQ(ϵ)]ψµ

= δG(ξ)

(
D̂µϵ+

1

2
mγµϵ

)
− δQ(ϵ)(ξν∂νψµ + ∂µξ

νψµ)

=
1

4
(ξν∂ν ω̂µab + ∂µξ

ν ω̂µab) +
1

2
(ξν∂νeµ

a + ∂µξ
νeν

a)γaϵ

− ξν∂ν
(
D̂µϵ+

1

2
mγµϵ

)
− ∂µξν

(
D̂νϵ+

1

2
mγνϵ

)
= −ξν∂ν∂µϵ− ∂µξν∂νϵ−

1

4
ξν ω̂µabγ

ab∂νϵ−
1

2
mξνγµ∂νϵ

= ∂µ(−ξν∂νϵ) +
1

4
ω̂µabγ

ab(−ξν∂νϵ) +
1

2
mγµ(−ξν∂νϵ)

= D̂µ(−ξ · ∂ϵ) +
1

2
mγµ(−ξ · ∂ϵ) = δQ(−ξ · ∂ϵ)ψµ

(3.87)

(3.87)2番目の等号では、ω̂µab が一般座標変換に対しては共変ベクトルとして変換することを用いている。し

たがって、[δG(ξ), δQ(ϵ)] = δQ(−ξ · ∂ϵ)が成立。

◦ [δL(λ), δQ(ϵ)] = δQ(
1
4λ

abγabϵ)の証明

[δL(λ), δQ(ϵ)]eµ
a = δL(λ)

1

4
ϵ̄γaψµ − δQ(ϵ)(−λabeµb)

= − 1

16
λbcϵ̄γaγbcψµ +

1

4
λabϵ̄γ

bψµ

(3.88)

ここでガンマ行列について、以下のように変形させる。

γaγbc = γabc + δab γc − δac γb = γbc
a + δab γc − δac γb = γbcγ

a + 2δab γc − 2δac γb (3.89)

これを (2.88)に代入すると、

[δL(λ), δQ(ϵ)]eµ
a = − 1

16
λbcϵ̄γbcγ

aψµ −
1

8
λacϵ̄γ

cψµ −
1

8
λabϵ̄γ

bψµ +
1

4
λabϵ̄γ

bψµ

= − 1

16
λbcϵ̄γbcγ

aψµ

(3.90)

が得られる。またここで、

λbcγbcϵ = λbc(γbcϵ)
†
iγ0 = λbcϵ†γbc

†iγ0 = −λbcϵ†iγ0γbc = −λbcϵ̄γbc (3.91)

であるから、

[δL(λ), δQ(ϵ)]eµ
a =

1

16
λbcγbcϵγ

aψµ =
1

4

(
1

4
λbcγbcϵ

)
γaψµ = δQ

(
1

4
λbcγbcϵ

)
eµ
a (3.92)

が成立する。続いて ψµ についても同様に計算する。
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[δL(λ), δQ(ϵ)]ψµ

= δL(λ)

(
D̂µϵ+

1

2
mγµϵ

)
− δQ(ϵ)

(
−1

4
λabγabψµ

)
=

1

4
D̂µλ

abγabϵ−
1

2
mλabeµ

bγaϵ+
1

4
λabγab

(
D̂µϵ+

1

2
mγµϵ

)
= D̂µ

(
1

4
λabγabϵ

)
− 1

2
mλabeµ

bγaϵ+
1

8
mλabeµ

cγabγcϵ

(3.93)

スピン接続について 2行目では (2.21)を用いた。ここでも、またガンマ行列について、

eµ
cγabγc = γabµ + eµbγa − eµaγb = γµab + eµbγa − eµaγb = γµγab + 2eµbγa − 2eµaγb (3.94)

と変形できるから、(3.93)へ代入すると、

[δL(λ), δQ(ϵ)]ψµ

= D̂µ

(
1

4
λabγabϵ

)
+

1

8
mλabγµγabϵ−

1

2
mλabeµ

bγaϵ+
1

4
mλabeµ

bγaϵ−
1

4
mλa

beµ
aγbϵ

= D̂µ

(
1

4
λabγabϵ

)
+

1

2
mγµ

(
1

4
λabγabϵ

)
= δQ

(
1

4
λabγabϵ

)
ψµ

(3.95)

と求まる。したがって、[δL(λ), δQ(ϵ)] = δQ(
1
4λ

abγabϵ)が成立。

◦ [δQ(ϵ1), δQ(ϵ2)] = δG(ξ) + δL(λ) + δQ(ϵ)の証明

[δQ(ϵ1), δQ(ϵ2)]eµ
a =

1

4
ϵ̄2γ

a

(
D̂µϵ1 +

1

2
mγµϵ1

)
− (1↔ 2)

=
1

4
ϵ̄2γ

aD̂µϵ1 −
1

4
ϵ̄1γ

aD̂µϵ2 +
1

8
m(ϵ̄2γ

aγµϵ1 − ϵ̄1γaγµϵ2)

=
1

4
D̂µ(ϵ̄2γ

aϵ1) +
1

4
mϵ̄2γ

a
µϵ1

(3.96)

2 番目から 3 番目の等号へは、双一次形式の対称性 (3.22) を用いた。ここで (3.11) で定義したパラメータ

ξν = 1
4 ϵ̄2γ

νϵ1 を導入し、(3.5)の関係式を用いると、以下のように求まる。

[δQ(ϵ1), δQ(ϵ2)]eµ
a

= D̂µ(ξ
νeν

a) +
1

4
mϵ̄2γ

a
µϵ1

= ∂µξ
νeν

a + ξνD̂νeµ
a + ξν(D̂µeν

a − D̂νeµ
a) +

1

4
mϵ̄2γ

a
µϵ1

= ∂µξ
νeν

a + ξν∂νeµ
a + ξν ω̂ a

ν beµ
b − 1

4
ξνψ̄νγ

aψµ +
1

4
meµ

bϵ̄2γ
a
bϵ1

= δG(ξ)eµ
a + δQ(−ξ · ψ︸ ︷︷ ︸

=ϵ

)eµ
a −

(
−ξν ω̂ a

ν b −
1

4
mϵ̄2γ

a
bϵ1

)
eµ
b︸ ︷︷ ︸

=δL(λ)eµa

= [δG(ξ) + δL(λ) + δQ(ϵ)]eµ
a

(3.97)
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ここでの変換のパラメータは (3.11)、(3.77)で定義されたものである。

続いて ψµ について計算を行う。

[δQ(ϵ1), δQ(ϵ2)]ψµ = δQ(ϵ1)

(
D̂µϵ2 +

1

2
mγµϵ2

)
− (1↔ 2)

=
1

4
δQ(ϵ1)ω̂

ab
µ γabϵ2 +

1

2
m

(
1

4
ϵ̄1γ

aψµ

)
γaϵ2 − (1↔ 2)

(3.98)

ここで δQ(ϵ1)ω̂
ab
µ について考えると、これは付録 Bで求めたm = 0の部分 δQ(ϵ1)ω̂

ab
µ |m=0 と (3.17)の ψµ

の局所超変換によるmの寄与とに分けられる。よって、(3.4)と (3.17)から、具体的には

δQ(ϵ1)ω̂
ab
µ = δQ(ϵ1)ω̂

ab
µ |m=0 +

1

8
· 1
2
m(ψ̄aγµγbϵ1 − ϵ̄1γaγµψb

+ ψ̄µγaγbϵ1 − ϵ̄1γµγaψb − ψ̄µγbγaϵ1 + ϵ̄1γµγbψa)

= δQ(ϵ1)ω̂
ab
µ |m=0 +

1

16
m[ψ̄a(γµb + eµb)ϵ1 − ϵ̄1(γaµ + eµa)ψb

+ ψ̄µ(γab + ηab)ϵ1 − ϵ̄1(γµa + eµa)ψb − ψ̄µ(γba + ηab)ϵ1 + ϵ̄1(γµb + eµb)ψa]

= δQ(ϵ1)ω̂
ab
µ |m=0 +

1

16
m(−2ϵ̄1γabψµ + 2eµbϵ̄1ψa − 2eµaϵ̄1ψb)

= δQ(ϵ1)ω̂
ab
µ |m=0 −

1

8
m(ϵ̄1γabψµ + eµaϵ̄1ψb − eµbϵ̄1ψa)

(3.99)

と書けるので、(3.98)は

[δQ(ϵ1), δQ(ϵ2)]ψµ =
1

4
δQ(ϵ1)ω̂

ab
µ γabψµ|m=0

− 1

32
mγabϵ2(ϵ̄1γabψµ − 2eµbϵ̄1ψa) +

1

8
mγaϵ2ϵ̄1γ

aψµ − (1↔ 2)

(3.100)

と表せた。さらに 2行目のそれぞれの項に対し Fierz 恒等式 (3.22)を用いて変形する。

− 1

32
mγabϵ2ϵ̄1γabψµ − (1↔ 2)

= − 1

32
m

(
−1

4

)ϵ̄1γcϵ2 γabγcγab︸ ︷︷ ︸
=0 ∵ (3.68)

ψµ −
1

2
ϵ̄1γ

cdϵ2 γabγcdγab︸ ︷︷ ︸
=4γcd ∵ (3.68)

ψµ

× 2

=
1

32
mϵ̄2γ

cdϵ1γcdψµ

(3.101)

1

16
mγabϵ2eµbϵ̄1ψa − (1↔ 2)

=
1

16
m

(
−1

4

)[
ϵ̄1γ

cϵ2γ
a
µγcψa −

1

2
ϵ̄1γ

cdϵ2γ
a
µγcdψa

]
× 2

=
1

32
m

[
ϵ̄2γ

cϵ1γ
a
µγcψa −

1

2
ϵ̄2γ

cdϵ1γ
a
µγcdψa

] (3.102)
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1

8
mγaϵ2ϵ̄1γ

aψµ − (1↔ 2)

=
1

8
m

(
−1

4

)ϵ̄1γcϵ2 γaγcγ
a︸ ︷︷ ︸

=−2γc ∵ (3.63)

ψµ −
1

2
ϵ̄1γ

cdϵ2 γaγcdγ
a︸ ︷︷ ︸

=0 ∵ (3.63)

ψµ

× 2

= −1

8
mϵ̄2γ

cϵ1γcψµ

(3.103)

よって、[δQ(ϵ1), δQ(ϵ2)]ψµ におけるmの寄与のみ取り出すと、(3.11)の ξc を用いて、

[δQ(ϵ1), δQ(ϵ2)]ψµ (mの項)

=
1

8
mξc(γaµγcψa − 4γcψµ) +

1

32
mϵ̄2γ

cdϵ1

(
γcdψµ −

1

2
γaµγcdψa

)
=

1

8
mξc[(γaµc + eµcγ

a − δac γµ)ψa − 4γcψµ]

+
1

32
mϵ̄2γ

cdϵ1

[
γcdψµ −

1

2
(γaµcd + 2eµcγ

a
d − 2δac γµd + 2eµcδ

a
d)ψa

]
=

1

8
mξc(γaµcψa + eµcγ

aψa − γµψc − 4γcψµ)

+
1

32
mϵ̄2γ

cdϵ1

(
γcdψµ −

1

2
γaµcdψa − eµcγadψa + γµdψc − eµcψd

)
(3.104)

と表せる。

ここでまた、付録 B との類推から、この代数もオン・シェルでのみ閉じる代数であると考え、Rarita-

Schwinger 方程式を用いて表すことを考える。この場合 (3.16)のラグランジアンから、場の方程式は

Rµ = 0, Rµ ≡ 2γµνρD̂νψρ − 2mγµνψν (3.105)

である。m = 0では、この交換関係は (B.30)式と一致するので、mがある場合でも、同じ形に書けると予想

し、(B.30)の Rµ の代わりにRµ を代入し、質量項の部分から出てくるmの寄与と、(3.104)の寄与を比べて

みる。よって (B.30)から、

− 1

16
ξν(γνRµ − 2γνµρRρ) (mの項)　

= − 1

16
ξν [γν(−2m)γµρψ

ρ − 2γνµρ(−2m)γρσψσ]

=
1

8
mξν [(γνµρ + gµνγρ − gνργµ)ψρ − 2γνµρ(γ

ργσ − gρσ)ψσ]

=
1

8
mξν(γνµρψ

ρ + gµνγρψ
ρ − γµψν − 4γνµγσψ

σ + 2γνµ
σψσ)

=
1

8
mξν(3γνµρψ

ρ + gµνγρψ
ρ − γµψν − 4(γνµσ + gµσγν − gνσγµ)ψσ)

=
1

8
mξν(−γνµρψρ + gµνγρψ

ρ − 4γνψµ + 3γµψν)

(3.106)

と求まる。同様にして
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1

128
ϵ̄2γ

ρσϵ1(2γρσµνRν − γρσRµ − 4gµρRσ) (mの項)

=
1

128
ϵ̄2γ

ρσϵ1[2γρσµν(−2m)γντψτ − γρσ(−2m)γµνψ
ν − 4gµρ(−2m)γστψ

τ ]

= − 1

64
ϵ̄2γ

ρσϵ1[2γρσµν(γ
νγτ − gντ )ψτ

− (γρσµν + 2gσµγρν − 2gσνγρµ + 2gσµgρν)ψ
ν − 4gµργστψ

τ ]

= − 1

64
ϵ̄2γ

ρσϵ1(2γρσµγτψ
τ − 3γρσµνψ

ν − 2gσµγρνψ
ν + 2γρµψσ − 2gσµψρ − 4gµργσνψ

ν ]

= − 1

64
ϵ̄2γ

ρσϵ1[2(γρσµτ + gµτγρσ − 2gστγρµ)ψ
τ − 3γρσµνψ

ν + 2γρµψσ − 2gσµψρ − 2gµργσνψ
ν ]

= − 1

64
ϵ̄2γ

ρσϵ1(−γρσµνψν + 2γρσψµ − 2γρµψσ − 2gσµψρ − 2gµργσνψ
ν)

(3.107)

と書ける。今までの結果をまとめると、

[δQ(ϵ1), δQ(ϵ2)]ψµ (mの項)

=
1

8
mξc(γaµcψa︸ ︷︷ ︸

a⃝
+eµcγ

aψa︸ ︷︷ ︸
b⃝

−γµψc−4γcψµ︸ ︷︷ ︸
c⃝

)

+
1

32
mϵ̄2γ

cdϵ1

γcdψµ−1

2
γaµcdψa︸ ︷︷ ︸

d⃝

−eµcγadψa︸ ︷︷ ︸
e⃝

+γµdψc︸ ︷︷ ︸
f⃝
−eµcψd︸ ︷︷ ︸

g⃝


(3.108)

− 1

16
ξν(γνRµ − 2γνµρRρ) +

1

128
ϵ̄2γ

ρσϵ1(2γρσµνRν − γρσRµ − 4gµρRσ) (mの項)　

=
1

8
mξν(−γνµρψρ︸ ︷︷ ︸

a⃝
+gµνγρψ

ρ︸ ︷︷ ︸
b⃝

−4γνψµ︸ ︷︷ ︸
c⃝

+3γµψν)

− 1

64
ϵ̄2γ

ρσϵ1(−γρσµνψν︸ ︷︷ ︸
d⃝

+2γρσψµ−2γρµψσ︸ ︷︷ ︸
f⃝

−2gσµψρ︸ ︷︷ ︸
g⃝

−2gµργσνψν︸ ︷︷ ︸
e⃝

)

(3.109)

となるから、[δQ(ϵ1), δQ(ϵ2)]ψµ におけるmの a⃝～ g⃝の寄与は (B.30)の Rµ をRµ に置き換えると、Rµ に
吸収されることが分かる。残りの部分も、係数を合わせることでRµ に含ませることができ、そのとき余る項
を示すと

− 1

2
mξνγµψν +

1

16
mϵ̄2γ

abϵ1γabψµ

=
1

2
mγµ(−ξ · ψ)︸ ︷︷ ︸
δQ(ϵ)ψµに吸収

−1

4

(
−1

4
ϵ̄2γ

abϵ1

)
γabψµ︸ ︷︷ ︸

δL(λ)ψµに吸収

(3.110)

であり、第 1項は (3.17)のmの付加項として、第 2項は (3.77)の変更された λab へ局所変換に含めることが

できる。

したがって、最終的な表式としては (B.30)と同じになり、
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[δQ(ϵ1), δQ(ϵ2)]ψµ = [δG(ξ) + δL(λ) + δQ(ϵ)]ψµ −
1

16
ξν(γνRµ + 2γµνρRρ)

+
1

128
ϵ̄2γ

ρσϵ1(2γρσµνRν − γρσRµ − 4gµρRσ)
(3.111)

である。ただし場の方程式はRµ = 0である。こちらの代数もオン・シェルでのみ閉じるものになる。

したがって、[δQ(ϵ1), δQ(ϵ2)] = δG(ξ) + δL(λ) + δQ(ϵ)が成立。

上の議論から、宇宙項を導入しても、3つの局所変換に対して不変かつ代数が閉じるような理論が構成され

ていることが確かめられた。ただ Poincaré超重力理論の場合と異なるのは、質量項の導入により、大域的カ

イラル U(1)対称性が失われたことである。これは (3.15)の計算から分かるように、(3.16)の質量項の双一次

形式に含まれるガンマ行列は γµν であり、γµνγ5 = γ5γ
µν であるため δψ̄µ と δψµ の寄与が相殺しなくなるた

めである。

3.2.3 反 de Sitter 時空解

さて、ラグランジアン (3.16)から導かれる場の方程式を考えると、

Rµν −
1

2
gµνR+ 3m2gµν =

1

2
Tµν γµνρD̂νψρ −mγµνψν = 0 (3.112)

となる。ここでフェルミオン部分をまとめて Tµν と表している。Rarita-Schwinger 場に対する方程式は

ψµ = 0を解に持つ。このとき重力場の方程式としては、(2.7)で D = 4としたものに等しく

Rµν = −3m2gµν (3.113)

と求まる。Minkowski 時空 eµ = δaµ は、Rµν = 0 となってしまうので、この方程式の解ではない。この

方程式の解のうち、Minkowski 時空と同じように高い対称性を持つ解は、反 de Sitter 時空 (anti de Sitter

spacetime, AdS 時空)*4である。反 de Sitter 時空における Riemann テンソルは、(3.113) の表式に付録

(C.11)を対応させると、m = aであるので、(C.5)から、

Rµνρσ = −m2(gµρgνσ − gµσgνρ) (3.114)

のように計量を用いて表すことができる。この理論のように、反 de Sitter 時空を場の方程式の解としてもつ

超重力理論を AdS 超重力理論とよぶ。

反 de Sitter 時空はアイソメトリとして高い対称性を持つ。Minkowski 時空が 1.3 節で議論した Poincaré

対称性をもつように、反 de Sitter 時空は付録 (C.2) の双局面の定義から、D = 4 においては、SO(2, 3) 対

称性をもっていることがわかる。これは、3 次元空間中に埋め込まれた半径 a の 2 次元球面は中心を原点に

とると x2 + y2 + z2 = a2 と表され、対称性として球対称、すなわち SO(3)対称性をもっていることと似て

いる。また Poincaré群の生成子の個数は、並進 4個と Lorentz 変換 6個の合わせて 10個である。SO(2, 3)

も同様 10個の生成子をもっている。一般に、D 次元空間 (時空)が持ちうる対称性の生成子の最大の個数は、
1
2D(D + 1)である。それは、D 次元空間中における D 個の並進対称性、2つの軸により張られる平面内での

DC2 = 1
2D(D − 1)個の回転対称性からなり、

*4 反 de Sitter時空の定義は、付録 Cを参照
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D︸︷︷︸
並進対称性

+
1

2
D(D − 1)︸ ︷︷ ︸
回転対称性

=
1

2
D(D + 1) (3.115)

として求まる。このような、対称性の生成子として最大の数を持っている空間を極大対称空間とよぶ。

Minkowski 時空と反 de Sitter 時空は、極大対称空間である。極大対称空間の特徴は、(3.114) のように

Riemann テンソルが計量を用いて表されることである。これは、極大対称空間においては、その時空内の任

意の点は特別な点でない、すなわち任意の点からまわりを眺めても、全て同じように見える、(時間を含めた)

一様等方性が成立するため、世界添字 4つを持つ Riemann テンソルは、一般座標変換に対して不変な量から

構成されている必要がある。それには gµν、δµν、ϵµνρσ などが存在するが、そのうち Riemann テンソルの対

称性

Rµνρσ = −Rνµρσ = −Rµνσρ = Rρσµν Rµ[νρσ] = 0 (3.116)

を満たすのは、

Rµνρσ ∝ gµρgνσ − gµσgνρ (3.117)

であるからである。

また、反 de Sitter時空解は、大域的超対称性を持っている。2.1節でも議論したように、場の方程式の解が

超対称性を持つためには、その解に対して超変換 (3.17) の右辺がゼロになる必要がある。ψµ = 0 の場合は

eµ
a の超変換は自動的にゼロとなる。ψµ の超変換がゼロになることから、(

Dµ +
1

2
mγµ

)
ϵ = 0 (3.118)

ψµ = 0ゆえ D̂µ = Dµである。これは、超変換のパラメータ ϵに対する微分方程式であり、その解はKillingス

ピノールと呼ばれる。Killing スピノールが存在すれば、解は超対称性を持っている。(3.118)は µ = 0, 1, 2, 3

の 4つの方程式からなり、これらが矛盾なく解を持つためには、積分可能条件

0 =

[
Dµ +

1

2
mγµ, Dν +

1

2
mγν

]
ϵ

= [Dµ, Dν ]ϵ+
1

2
m(Dµγν)ϵ−

1

2
m(Dνγµ)ϵ+

1

4
m2[γµ, γν ]ϵ

=
1

4
(Rµν

ab + 2m2eµ
aeν

b)γabϵ

(3.119)

が成り立つことが必要である。2番目の等号では、(3.47)、(2.28)、[γµ, γν ] = 2γµν = 2eµ
aeν

bγab を用いた。

反 de Sitter時空の場合は、最後の式に (3.114)を代入するとゼロとなるので、確かに積分可能条件が成立し

ている。このように、反 de Sitter時空解は、ある定まった関数の下で解を不変に保つという意味で、大域的

な超対称性ををもつことが確かめられた。
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4 結論

重力場とフェルミオン場の結合の定式化に多脚場を導入することによって、平らな時空のフェルミオン場

の理論を曲がった時空へと拡張することができた。また超 Poincaré 代数には、質量ゼロの超多重項の 1 つ

としてヘリシティ 2 とヘリシティ 3/2 の超重力多重項が含まれることが分かった。そしてその事実をもっ

て、局所超変換・一般座標変換不変性を持つ理論のゲージ場としてボソン場の重力場とフェルミオン場の

Rarita-Schwinger 場を導入して、Poincaré超重力理論を構成できるようになることをみた。

Poincaré超重力理論は背景場としてMinkowski 時空を解として持ち、定数スピノルによる超変換では、そ

の解の形は不変に保たれることをみた。また Poincaré超重力理論のラグランジアンに宇宙項を加えることで、

背景場の解として AdS時空を持つような理論を構成できることを確かめた。それに伴い超変換の形は変更を

受けたが、ラグランジアンに Rarita-Schwinger 場の質量項を加えることで、そのラグランジアンから構成さ

れる作用は、種々の局所変換に対し不変に保たれ、局所変換の交換関係がオン・シェルで閉じた代数をなすこ

とが具体的に確かめられた。この AdS時空の場合でも、超変換に対し方程式の解の形を不変に保つ変換は存

在し、大域的超対称性を持つことが分かった。
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付録 A Einstein 方程式の導出

重力場 gµν についてののラグランジアンは (2.1)で与えられる。(16πG = 1とする。)

LE =
√
−g(R− 2Λ) (付録 A.1)

このときの作用 SE は、空間の次元を D 次元とすると

SE =

∫
dDx
√
−g(R− 2Λ) (付録 A.2)

と表せる。これを gµν について変分を取ることを考えると、以下を得る。

δSE =

∫
dDx{

√
−gRµνδgµν + δ

√
−g(R− 2Λ) +

√
−ggµνδRµν} (付録 A.3)

ここで (A.3)括弧内第 2項について、δ
√
−g は、以下のように変形できる。

δ
√
−g = −1

2
(−g)− 1

2 δg (付録 A.4)

さらに δg は計量の余因子行列 g̃µν を用いて、

δg = det(gµν + δgµν)− det(gµν)

= g̃µν(gµν + δgµν)− g̃µν(gµν) = g̃µνδgµν
(付録 A.5)

と表せ、さらに gµν の逆行列 gµν について、

gµν =
1

g
g̃νµ =

1

g
g̃µν よって g̃µν = ggµν (付録 A.6)

が求まるので、

0 = δ(δµµ) = δ(gµνgµν) = δgµνgµν + gµνδgµν

⇒ gµνδgµν = −gµνδgµν
(付録 A.7)

と (A.5)、(A.6)を用いると、(A.4)式は、

δ
√
−g = −1

2

√
−ggµνδgµν (付録 A.8)

と変形できる。

続いて (A.3)括弧内第 3項の変分について考える。Rµν をあらわに書くと、

Rµν = ∂ρΓ
ρ
µν − ∂νΓρµρ + ΓσµνΓ

ρ
ρσ − ΓσµρΓ

ρ
νσ (付録 A.9)

と表される。Rµν は Christoffel 記号を通じて gµν に依存している。この両辺で変分を取ると、
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δRµν = ∂ρδΓ
ρ
µν − ∂νδΓρµρ + δΓσµνΓ

ρ
ρσ + ΓσµνδΓ

ρ
ρσ − δΓσµρΓρνσ − ΓσµρδΓ

ρ
νσ

=
{
∂ρδΓ

ρ
µν + ΓρρσδΓ

σ
µν − ΓρνσδΓ

σ
µρ − ΓσρµδΓ

ρ
σν

}
−
{
∂νδΓ

ρ
µρ + ΓσµρδΓ

ρ
νσ − ΓσνµδΓ

ρ
σρ − ΓσνρδΓ

ρ
µσ

}
= Dρ(δΓ

ρ
µν)−Dν(δΓ

ρ
µρ)

(付録 A.10)

となり、δΓλµν がテンソルとしてふるまっているかのような項が現れる。Γλµν の座標変換に対する変換式を書

くと、x′ 系の添え字にはプライム (′)を付けるとして、

Γλ
′

µ′ν′ =
∂xλ

′

∂xλ
∂xµ

∂xµ′

∂xν

∂xν′ Γ
λ
µν +

∂xλ
′

∂xµ
∂2xµ

∂xµ′∂xν′ (付録 A.11)

であるので、Γλµν はテンソルではない。しかしこの式に計量について変分をとった式を書くと、以下のように

なる。

δΓλ
′

µ′ν′ =
∂xλ

′

∂xλ
∂xµ

∂xµ′

∂xν

∂xν′ δΓ
λ
µν +

����������:0

δ

{
∂xλ

′

∂xµ
∂2xµ

∂xµ′∂xν′

}
(付録 A.12)

右辺第 2項は δ が計量についての変分であるのでゼロとなる。したがって δΓλµν は 3階のテンソルとしてふる

まうことが分かる。したがって (A.10)の両辺に gµν を作用させると、

gµνδRµν = Dρ(g
µνδΓρµν)−Dν(g

µνδΓρµρ)

= Dρ(g
µνδΓρµν − gµρδΓσµσ)

= DρA
ρ

Aρ ≡gµνδΓρµν − gµρδΓσµσ

(付録 A.13)

と反変ベクトルの共変微分で表せることが分かる。1行目の等号では計量条件 (2.3)を用いた。ここで後のた

めに (2.4)で λ = ν とした式を以下のように変形させる。

Γνµν =
1

2
gνρ(∂µgνρ − ∂νgµρ − ∂ρgµν)

=
1

2g
∂µg�������

+
1

2g
gνρgµρ∂νg�������− 1

2g
gνρgµν∂ρg

=
1

2

1

−g
∂µ(−g) =

1

2
∂µ(ln(−g)) = ∂µ(ln

√
−g)

(付録 A.14)

ここで等号 1行目から 2行目では (A.5)、(A.6)から導かれる式 ∂λg = ggµν∂λgµν , → ∂λgµν = (1/g)gµν∂λg

を用いた。したがって (A.13)は、

DρA
ρ = ∂ρA

ρ + Γρσρ = ∂ρA
ρ + ∂ρ(ln

√
−g)Aρ = 1√

−g
(
√
−g∂ρAρ +

√
−g∂ρ(ln

√
−g)Aρ)

=
1√
−g

(
√
−g∂ρAρ + ∂ρ(

√
−g)Aρ) = 1√

−g
∂ρ(
√
−gAρ)

(付録 A.15)

と変形される。(A.3)より、右辺の第 3項は全微分項になることがわかり、ガウスの定理を適用できる。
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∫
dDx
√
−ggµνδRµν =

∫
dDx∂ρ(

√
−gAρ) =

∫
(
√
−gAρ)dSρ → 0 (付録 A.16)

ここで無限遠での面積分は δΓλµν = 0より 0となる。したがって Rµν の変分は方程式には寄与しないことが

分かる。

今までの結果をまとめると、(A.3)は、

δSE =

∫
dDx
√
−g(Rµν −

1

2
gµνR+ Λgµν)δg

µν (付録 A.17)

と表せる。物質のラグランジアンについても同様に行う。物質のラグランジアン Lm に対する作用 Sm は、

Sm =

∫
dDx
√
−gLm (付録 A.18)

で与えられ、これに対して計量について変分を取ると、以下のように変形できる。

δSm =

∫
dDxδ(

√
−gLm) = −1

2

∫
dDx
√
−g

(
−2√
−g

δ(
√
−gLm)

δgµν

)
︸ ︷︷ ︸

≡Tµν

δgµν = −1

2

∫
dDx
√
−gTµνδgµν

(付録 A.19)

したがって全ラグランジアン L = LE + Lm に対し変分原理を適用すると、Einstein 方程式 (2.6) が得ら

れる。

また、(2.6)で真空の場合は、(2.6)で Tµν = 0として両辺に gµν を作用させると、

R− D

2
R+DΛ = 0 ⇒ R =

2D

D − 2
Λ (付録 A.20)

と変形できるので、この Rを元の方程式に代入すると、(2.7)を得る。
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付録 B Rarita-Schwinger 場 ψµ に対する局所超変換の交換関係 (m = 0)

付録 Bでは、AdS 超重力理論における Rarita-Schwinger 場 ψµ に対する局所超変換の交換関係の証明の下

準備として、先に Poincaré超重力理論 (m = 0)の場合について示しておく。

(3.9)から、Rarita-Schwinger 場 ψµ に対しては、

[δQ(ϵ1), δQ(ϵ2)]ψµ = δQ(ϵ1)

(
∂µ +

1

4
ω̂µabγ

ab

)
ϵ2 − (1↔ 2)

=
1

4
δQ(ϵ1)ω̂µabγ

abϵ2 − (1↔ 2)

(付録 B.1)

のように、スピン接続 ω̂µab の超変換に帰着する。そこで δQ(ϵ1)ω̂µab について考える。(3.5)の式は、具体的

に多脚場の共変微分を書き下すと、

1

4
ψ̄µγ

aψν = ∂µeν
a + ω̂ a

µ beν
b − (µ↔ ν) (付録 B.2)

と表せる。この両辺を超変換すると、

δQ(ϵ1)(左辺) =
1

4
D̂µϵ̄1γ

aψν +
1

4
ψ̄µγ

aD̂νϵ1 (付録 B.3)

δQ(ϵ1)(右辺) = ∂µδQ(ϵ1)eν
a + ω̂ a

µ bδQ(ϵ1)eν
b + δQ(ϵ1)ω̂

a
µ beν

b − (µ↔ ν)　

= D̂µδQ(ϵ1)eν
a − D̂νδQ(ϵ1)eµ

a + δQ(ϵ1)ω̂
a
µ beν

b − δQ(ϵ1)ω̂ a
ν beµ

b

= D̂µ

(
1

4
ϵ̄1γ

aψν

)
− D̂ν

(
1

4
ϵ̄1γ

aψµ

)
+ δQ(ϵ1)ω̂

a
µ beν

b − δQ(ϵ1)ω̂ a
ν beµ

b

(付録 B.4)

と変形でき、双一次形式の対称性 (3.22)から、両辺で D̂ϵ̄の項は相殺される。ここで ω̃µaν ≡ δQ(ϵ1)ω̂µabeνb =
−ω̃µνa、ψµν ≡ D̂µψν − D̂νψµ と定義すると、(B.3)、(B.4)から、

ω̃µaν − ω̃νaµ = −1

4
ϵ̄1γaψµν (付録 B.5)

と表され、また添字をサイクリックに回した式

ω̃aνµ − ω̃µνa = −1

4
ϵ̄1γνψaµ (付録 B.6)

ω̃νµa − ω̃aµν = −1

4
ϵ̄1γµψνa (付録 B.7)

を用意し、(B.5) + (B.6)− (B.7)式を計算すると、

2ω̃µaν = −1

4
(ϵ̄1γaψµν + ϵ̄1γνψaµ − ϵ̄1γµψνa) (付録 B.8)

であるから、δQ(ϵ1)ω̂µab は、
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δQ(ϵ1)ω̂µab = eb
ν ω̃µaν = −1

8
(ϵ̄1γaψµb + ϵ̄1γbψaµ − ϵ̄1γµψba)

= −1

8
(ϵ̄1γµψab − ϵ̄1γaψbµ + ϵ̄1γbψaµ)

(付録 B.9)

と求まった。したがってこれを (B.1)に代入すればよい。

[δQ(ϵ1), δQ(ϵ2)]ψµ =
1

4
γabϵ2

(
−1

8

)
(ϵ̄1γµψab − ϵ̄1γaψbµ + ϵ̄1γbψaµ)− (1↔ 2) (付録 B.10)

右辺に対し Fierz 恒等式 (3.21)を用いると、(1 ↔ 2)の反対称化により、双一次形式の対称性 (3.22)を用い

ることができ、その結果は、

[δQ(ϵ1), δQ(ϵ2)]ψµ = − 1

32

(
−1

4

)[
ϵ̄1γ

cϵ2γ
abγc(γµψab − γaψbµ + γbψaµ)

−1

2
ϵ̄1γ

cdϵ2γ
abγcd(γµψab − γaψbµ + γbψaµ)

]
×2︸︷︷︸

反対称化による因子

(付録 B.11)

となる。ϵ̄1γcϵ2 の項からまず計算する。ここでガンマ行列について、

γabγcγµ = (γabc + δbcγ
a − δac γb)γµ

= γabcµ + eµcγ
ab − 2eµ

bγac + 2δbcγ
a
µ + 2δbceµ

a

γabγcγa = (γabc + δbcγ
a − δac γb)γa = 2γbc + 4δbc − δac γba − δbc

= γbc + 3δbc

(付録 B.12)

と変形できる。ここで γabγcγµ の変形において添字 a, bについては ψab で和がとられているため、a, bについ

て反対称部分は 2倍され (例: δbcγ
a − δac γb = 2δbcγ

a)、対称部分は消えることを用いている。この後の計算で

もこのような添字に対しては同様に扱うこととする。したがって ϵ̄1γ
cϵ2 の項は、

(ϵ̄1γ
cϵ2の項)

= − 1

64
ϵ̄2γ

cϵ1
[
(γabcµ + eµcγ

ab − 2eµ
bγac + 2δbcγ

a
µ + 2δbceµ

a)ψab − 2(γbc + 3δbc)ψbµ
]

= − 1

64
ϵ̄2γ

cϵ1
[
γcµ

abψab + eµcγ
abψab − 4γacψaµ + 2γaµψac + 8ψµc

] (付録 B.13)

と表される。ここまで項が煩雑になると、この代数は場の方程式を使わず (オフ・シェル)には閉じそうにな

い。よって、ラグランジアン (3.1)に対し ψµ について変分して得られる場の方程式を Rν ≡ γνρσψρσ = 0と

表し、この代数がオン・シェルで閉じるかどうか確かめる (オン・シェルの場合 Rν = 0)。そのためには、ス

ピノル ψab の項を Rν を用いて表さなければならない。そこでスピノルの双一次形式を思い出すと、任意の

4× 4の行列はガンマ行列の反対称積を基底に展開できるのであった。よって ψab の項を Rν の線形結合で表

すため、Rν にガンマ行列の反対称積を掛けた以下の量を計算する。このとき、µ以外は全て縮約されている

ため、反対称積の浮いている添字は反対称化された添字で和がとられているとしても一般性を失わない。した

がってそれらの添字に対しては前述のように扱う。
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γνR
ν = γνγ

νρσψρσ = 2γρσψρσ (付録 B.14)

γµRν = (γµνρσ + gµνγρσ + 2gµσγνρ)ψρσ (付録 B.15)

γµνR
ν = (γµγν − gµν)Rν = 2γµγ

ρσψρσ −Rµ = 2(γµ
ρσ + 2δρµγ

σ)ψρσ −Rµ
= 4γσψµσ +Rµ

(付録 B.16)

γαβνR
ν = γαβν(γ

νγρσ − 2gνργσ)ψρσ

= [(γαβγν − 2gβνγα)γ
νγρσ − 2(γαβγν − 2gβνγα)g

νργσ]ψρσ

= (4γαβγ
ρσ − 2γαγβγ

ρσ − 2γαβγ
ργσ + 4δρβγαγ

σ)ψρσ

= −4ψαβ + 4γα
σψβσ

(付録 B.17)

γαβγνR
ν = (γαγβγν − gανγβγ)Rν

= γα (−4ψβγ + 4γβ
σψγσ)︸ ︷︷ ︸

(B.17)

−γβγγαρσψρσ

= −4γαψβγ + 4(γαβ
σ − δσαγβ)γγσ − γβγ(γαγρσ + 2δσαγ

ρ)ψρσ

= −4γαψβγ + 4γαβ
σγγσ − 4γβγγα −

1

2
γβγα γνR

ν︸ ︷︷ ︸
(B.14)

−2(γβγρ + 2δργγβ)ψρα

= −12γαψβγ + 6γαβ
σγγσ −

1

2
γαβγγνR

ν

(付録 B.18)

これらを用いて、(B.13)を書き直していく。まず、(B.15)から (B.13)括弧内第 1項について

γcµ
abψab = γcRµ − eµcγρσψρσ − 2ec

σγµ
ρψρσ (付録 B.19)

である。さらに (3.11)で定義したパラメータ ξc を用いると、

(ϵ̄1γ
cϵ2の項)

= − 1

16
ξc[γcRµ − 2ec

σγµ
ρψρσ − 4γacψaµ + 2γaµψac + 8ψµc]

= − 1

16
ξc[γcRµ − 4γacψaµ + 4γaµψac + 8ψµc]

(付録 B.20)

と表せる。また (B.20)括弧内第 2、3項について、(B.17)から、

−4γacψaµ + 4γaµψac = −4γcaψµa + 4γµ
aψca = 2(γµcνR

ν + 4ψµc) (付録 B.21)

であるから、
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(ϵ̄1γ
cϵ2の項)

= − 1

16
ξc[γcRµ + 2γµcνR

ν + 16ψµc] = ξνψνµ −
1

16
ξνγνRµ +

1

8
ξργρµνR

ν

= ξν(D̂νψµ − D̂µψν)−
1

16
ξνγνRµ +

1

8
ξργρµνR

ν

= ξν∂νψµ +
1

4
ξν ω̂ ab

ν γabψµ − D̂µ(ξ
νψν) + ∂µξ

νψν −
1

16
ξνγνRµ +

1

8
ξργρµνR

ν

= ξν∂νψµ + ∂µξ
νψν −

1

4
(−ξ · ω̂)ab︸ ︷︷ ︸

=λab

γabψµ + D̂µ (−ξ · ψ)︸ ︷︷ ︸
=ϵ

− 1

16
ξνγνRµ +

1

8
ξργρµνR

ν

= [δG(ξ) + δL(λ) + δQ(ϵ)]ψµ −
1

16
ξνγνRµ +

1

8
ξργρµνR

ν

(付録 B.22)

と ψµ の局所変換と Rν の線形結合で表すことができた。

ϵ̄1γ
cdϵ2の項も同様に計算を行う。

(ϵ̄1γ
cdϵ2の項) =

1

128
ϵ̄2γ

cdϵ1γ
abγcd(γµψab − 2γaψbµ) (付録 B.23)

ここでまたガンマ行列を変形させる。

γabγcdγµ + γcdγ
abγµ = 2γabcdγµ − 4δac δ

b
dγµ から

γabγcdγµ = −γcdγabγµ − 2γµγ
ab
cd − 4δac δ

b
dγµ

= γcdγµγ
ab − 2γcdγµ

ab − 2γµγ
ab
cd − 4δac δ

b
dγµ

γabγcdγa = (−γbγa + ηab)γcdγa = −γb γaγcdγa︸ ︷︷ ︸
=0 ∵ (3.63)

+γcdγ
b = γcdγ

b

(付録 B.24)

したがって、

(ϵ̄1γ
cdϵ2の項) =

1

128
ϵ̄2γ

cdϵ1[γcdγµ γ
abψab︸ ︷︷ ︸

= 1
2γ

νRν

−2γcd γµabψab︸ ︷︷ ︸
=Rµ

−2γµγabcdψab − 4γµψcd − 2γcdγ
bψbµ]

(付録 B.25)

と表せる。ここでまた括弧内第 3項は (B.15)より、

γabcdψab = γcRd − 2δbcγd
aψab (付録 B.26)

であるから、これを代入して

(ϵ̄1γ
cdϵ2の項) =

1

128
ϵ̄2γ

cdϵ1

[
1

2
γcdγµγ

νRν − 2γcdRµ − 2γµγcRd

−2γcdγνψνµ + 4γµγd
aψac − 4γµψcd

] (付録 B.27)

を得る。ここで下線部について、(B.16)を用いると、

44



下線部 = −2γcdγνψνµ + 4γµ(γdγ
a − δad)ψac − 4γµψcd

= −2γcdγνψνµ + 4γµγdγ
aψac

=
1

2
γcd(γµνR

ν −Rµ)− γµγd(γcνRν −Rc)

= −1

2
γcd(γνγµ − gµν)Rν −

1

2
γcdRµ + γµγd(γνγc − eνc)Rν + γµγdRc

= −1

2
γcdγνγµR

ν + γµγdγνγcR
ν

(付録 B.28)

と Rν を用いて表せるので、これを (B.27)に代入して

(ϵ̄1γ
cdϵ2の項)

=
1

128
ϵ̄2γ

cdϵ1

[
1

2
γcdγµγ

νRν − 2γcdRµ − 2γµγcRd −
1

2
γcdγνγµR

ν + γµγdγνγcR
ν

]
=

1

128
ϵ̄2γ

cdϵ1

[
1

2
γcdγµγ

νRν − 2γcdRµ − 2γµcRd − 2eµcRd

−1

2
γcd(−γµγν + 2gµν)R

ν − γµγcγνγdRν
]

=
1

128
ϵ̄2γ

cdϵ1 [γcdγµγνR
ν − 3γcdRµ − 2γµcRd − 2eµcRd − γµ(−γνγc + 2eνc)γdR

ν ]

=
1

128
ϵ̄2γ

cdϵ1[γcdγµνR
ν − 2γcdRµ − 2γµcRd − 2eµcRd + γµγνγcdR

ν − 2γµγdRc]

=
1

128
ϵ̄2γ

cdϵ1[(γcdµν�����−2eνdγcµ + 2eµdγcν − 2eµceνd)R
ν

− γcdRµ�����−2γµcRd − 2eµcRd + γµνγcdR
ν + 2γµγcRd]

=
1

128
ϵ̄2γ

cdϵ1[γcdµνR
ν+2eµdγcνR

ν − 4eµcRd − γcdRµ
+ (γµνcd+2eµdγνc−2eνdγµc

::::::::
�����−2eµceνd)Rν+2γµcRd

:::::::
�����+2eµcRd]

=
1

128
ϵ̄2γ

cdϵ1[2γcdµνR
ν − γcdRµ − 4eµcRd]

=
1

128
ϵ̄2γ

ρσϵ1[2γρσµνR
ν − γρσRµ − 4gµρRσ]

(付録 B.29)

が得られる。5,6番目の等号では斜線部、下線部、波線部がそれぞれ打ち消しあう項である。よって (B.22)の

結果と合わせて、

[δQ(ϵ1), δQ(ϵ2)]ψµ = [δG(ξ) + δL(λ) + δQ(ϵ)]ψµ −
1

16
ξν(γνRµ + 2γµνρR

ρ)

+
1

128
ϵ̄2γ

ρσϵ1(2γρσµνR
ν − γρσRµ − 4gµρRσ)

(付録 B.30)

と最終的な形が求まる。したがってこの代数は、Rarita-Schwingerの場の方程式 Rµ = 0を用いたときのみ

閉じた代数となり、(3.10)の交換関係に一致する。よってこれはオン・シェルでのみ閉じる代数といえる。
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付録 C 反 de Sitter時空

D 次元の反 De Sitter時空は、計量

ds2 = ηABdX
AdXB

= −(dX0)2 +

D−1∑
i=1

(dXi)2 − (dXD)2
(付録 C.1)

をもつ D + 1次元空間内に埋め込まれた D 次元双曲面

(X0)2 −
D−1∑
i=1

(Xi)2 + (XD)2 =
1

a2
(付録 C.2)

として定義される。ここで、XA (A = 0, 1, · · · , D) は D + 1 次元時空の座標であり、a は長さの逆次元の

定数である。a−1 は反 de Sitter 時空の半径と呼ばれる。(D.2) を満たすような XA は、独立な D 個の座標

(t, ρ, θα) (α = 0, 1, · · · , D − 2)を用いて、

X0 =
cos t

a cos ρ
Xi =

1

a
tan ρX̂i(θ) XD =

sin t

a cos ρ
(付録 C.3)

と表すことができる。X̂i は
∑D−1
i=1 (X̂i)2 = 1 を満たす変数であり、D − 2 次元の単位球面 SD−2 の座

標 θα を使って表されている。例として、D = 4 の場合を考えると、θα として通常の極座標 θ, ϕ を使い、

X̂1 = sin θ cosϕ, X̂2 = sin θ sinϕ, X̂3 = cos θ となる。また (C.3) の表式から、座標 t, ρ の動く範囲は、

0 ≤ t ≤ 2π, 0 ≤ ρ < π
2 である。ρ = π

2 は空間的無限遠を表す。またこのままでは tについては周期的になっ

てしまうため、普遍被覆空間 (universal covering space)を考え、−∞ < t <∞とする。よってこれは時間方
向に無限個の反 de Sitter時空をつなげてできる時空である。以下では、この被覆空間を反 de Sitter空間と

よぶこととする。

(C.3)を (C.1)へ代入することで、D 次元空間の計量 ηAB から誘導される双局面上の計量

ds2 =
1

a2 cos2 ρ
(−dt2 + dρ2 + sin2 ρhαβ(θ)dθ

αdθβ) (付録 C.4)

が得られる。hαβ(θ)は単位球面 SD−2 の計量である。よってこの (C.4)が、D 次元反 de Sitter時空の計量

となる。またこの表式をみると、括弧内にD − 1次元の単位球面 SD−1 の計量 dρ2 + sin2 ρhαβ(θ)dθ
αdθβ が

現れていることが分かる。しかし、座標 ρの定義域は 0 ≤ ρ < π
2 であったので、t = 一定に対応するこの時

空の空間的断面は、SD−1 の半球面の内部であることが分かる。半球面の場合、球対称性が失われるため、位

相としては RD−1 に等しくなる。したがって、全体の時空としては RD と同じ位相構造を持っている。
この計量から Riemann テンソルを求めてみると、計量 gµν を用いて、

Rµνρσ = −a2(gµρgνσ − gµσgνρ) (付録 C.5)

と求まることがわかる。実際に具体的な成分 R0101 について確かめてみる。Riemann 曲率の形式 (2.2)から、

R 0
01 1 = ∂0Γ

0
11 − ∂1Γ0

01 + Γ0
0λΓ

λ
11 − Γ0

1λΓ
λ
01 (付録 C.6)
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である。計量 (C.4)は対角成分のみもつことを用いて、(2.4)から必要な Christoffel 記号を求めると、

Γ0
0λ =

1

2
g00(∂0gλ0 + ∂λg00 − ∂0g0λ) =

1

2
g00∂λg00 = δ1λ tan ρ

Γ1
11 = −1

2
g11∂1g11 = tan ρ

Γ0
1λ =

1

2
g00∂1gλ0 = δ0λ tan ρ

(付録 C.7)

が求まるので、これを (C.6)に代入すると、

R 0
01 1 = −∂1Γ0

01 + Γ0
01Γ

1
11 − Γ0

10Γ
0
01 = − 1

cos2 ρ
+ tan2 ρ− tan2 ρ = − 1

cos2 ρ
(付録 C.8)

となるので、

R0101 = g00R
0

01 1 =
1

a2 cos4 ρ
(付録 C.9)

と表される。これは (C.5)に成分を代入した形

R0101 = −a2(g00g11 − g01g10) = −a2 ·
−1

a2 cos2 ρ
· 1

a2 cos2 ρ
=

1

a2 cos4 ρ
(付録 C.10)

に一致する。他の成分についても同様にして確かめることができる。

(C.5)から Ricci テンソルとスカラー曲率は、

Rµν = −(D − 1)a2gµν R = −D(D − 1)a2 (付録 C.11)

と求まる。これは反 de Sitter時空が、負の定曲率をもった空間であり、その曲率半径が a−1 であることを

示す。また (C.5)の表式から、Riemann テンソルが計量のみで表されているため、反 de Sitter時空は極大対

称空間であることがわかる。
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