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1 Introduction

ホーキングによって「ブラックホールの事象の地表面からある温度のプランク分布が見える」というホーキ

ング輻射の存在が明らかになった。

本論文ではこれをウンルー効果によって導出した。ウンルー効果とは一般相対性理論と場の量子論を組み合

わせることによって導き出される効果で、「ミンコフスキー時空の慣性系に対して加速度運動している観測者

は、慣性系の真空にある温度のプランク分布を見出す」というものである。

まず準備として 2章で曲がった時空上でのスカラー場の量子化を行い、3章でウンルー効果を導出した。４

章でこのウンルー効果をシュワルツシルト計量ブラックホールの事象の地平面に直接応用することでホーキン

グ輻射を導出した。

本論文では c = ℏ = kB = 1の単位系を用い、またミンコフスキー計量は ηµν = diag(−1, 1, 1, 1)とした。
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2 曲った時空上でのスカラー場

2.1 曲がった時空上でのスカラー場の量子化

曲がった時空におけるスカラー場のラグランジアンは次のように書かれる。

L =
√
−g

(
−1

2
gµν∇µϕ∇νϕ− 1

2
m2ϕ2

)
(2.1)

共役運動量は

π =
∂L

∂ (∇0ϕ)
=

√
−g∇0ϕ (2.2)

となり、正準交換関係として、次の同時刻交換関係を課す。

[ϕ(t,x), ϕ (t,x′)] = 0

[π(t,x), π (t,x′)] = 0

[ϕ(t,x), π (t,x′)] =
i√
−g

δ(n−1) (x− x′)

(2.3)

スカラー場の運動方程式は、

　□ϕ−m2ϕ = 0　　　 (□ = gµν ∇µ∇ν) (2.4)

となる。この方程式の解の内積も適切に定義することができ、特に問題はない。

ここまでは、時空が平坦な状況とほとんど変わりはない。

2.2 スカラー場の展開

　

時空が曲がっている状況である今回も、平坦な場合と同様に、場の方程式（2.4）の一般解がどのように書け

るかを考える。

時空が平坦な場合であれば、場の方程式（2.4）の一般解は、

　ϕ(x) =

∫
d3k√

(2π)32Ek

{
a(k)e−i(Ekt−k·x) + a†(k)e+i(Ekt−k·x)

}
(2.5)

と書けた。（ただし Ek =
√
k2 +m2）しかし、時空が曲がっている状況ではこのように一般解を書くことは

できない。これは、そもそも平面波 e−i(Ekt−k·x) は時空が曲がっている状況では、一般に場の方程式（2.4）の

解にならないことからすぐに分かる。□ = ∇µ∇µ = gµν∇µ∇ν における gµν が一般に対角ではなく、そのた

め式（2.4）は時間 tと空間 xの偏微分が混じり合う偏微分方程式になっている。このような偏微分方程式で

は、一般に変数分離解 e−i(Ekt−k·x) はもたない。

では、「gµν が対角な時空」が変数分離解をもつ条件かというとそれは異なる。変数分離解をもつ条件は「静

的時空」である。これは次と等価である。

∂0 gµν = 0, g0i = 0 (2.6)
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(ここで i, j は空間成分を表す添え字である。) このとき、実際に変数分離解をもつことを確認してみると、次

のようになる。式 (2.6)の下で □ϕ(x)は

□ϕ(x) =

[
g00∂2

0 +
1

2
g00gij (∂ig00) ∂j + gij∂i∂j − gijΓk

ij∂k

]
ϕ(x) (2.7)

となる。したがって、場の方程式（2.4）は

∂2
0ϕ(x) = −

(
g00
)−1

[
gij∂i∂j +

1

2
g00gij (∂ig00) ∂j − gijΓk

ij∂k −m2

]
ϕ(x) (2.8)

となる。よって、左辺は時間微分のみ、右辺は空間微分と空間の関数のみで書けているので変数分離解をもつ

ことになる。それを fω(t, x)とすれば、振動数を ω(> 0)、残りの空間部分を f̄ω(x)として

fω(t, x) = e−iωtf̄ω(x) (2.9)

のように書ける。これは正の振動数モード

∂tfω(t, x) = −iωfω(t, x), ω > 0 (2.10)

であり、同様にして負の振動数の共役モード

∂tf
∗
ω(t, x) = +iωf∗

ω(t, x), ω > 0 (2.11)

も解として存在し、モード (fω, f
∗
ω)は、平坦な時空でのスカラー場の量子化の時と同様に、この状況での場の

方程式の解の基底を形成することになる。このモード (fω, f
∗
ω)で ϕを展開した時の展開係数が生成消滅演算

子となる。正の振動数モード fω の係数を消滅演算子、負の振動数モード f∗
ω の係数を生成演算子とする。

2.3 一般の解の基底とボゴリューボフ変換

静的時空であるとき、解は平坦な状況と同様に時間に関して変数分離解をもち、それが場の方程式の解の基

底となることを見た。しかし、一般の時空ではそのようにできない。

そこで、とりあえず一般の時空でも場の方程式の解の基底は存在することを仮定する。つまり、

　
(fi, fj) = δij(
f∗
i , f

∗
j

)
= −δij

(2.12)

なる fi (x
µ)を用いて

ϕ =
∑
i

(
âifi + â†if

∗
i

)
(2.13)

と書けることにする。ここで、平坦な時空の場合でそうであったように、この fi, f
∗
i の係数を生成消滅演算子

âi, â
†
i とする。しかし、解の基底は fi, f

∗
i である必要もないことに注意する。そこで別の基底 gi (x

µ)を用いて

ϕ =
∑
i

(
b̂igi + b̂†ig

∗
i

)
(2.14)

と展開 (expand)することも考える。当然、基底ゆえ

(gi, gj) = δij(
g∗i , g

∗
j

)
= −δij

(2.15)

4



が成り立ち、gi, g
∗
i の係数を生成消滅演算子 b̂i, b̂

†
i とする。別の基底で展開すれば、その展開係数も一般に異

なるので、

b̂i ̸= âi ,　b̂†i ̸= â†i (2.16)

である。このように色々な基底で展開することになる。

そこで、ある基底から別の基底への変換を考えたい。次のような基底から基底への変換することを考える。

gi =
∑
j

(
αijfj + βijf

∗
j

)
(2.17)

fi =
∑
j

(
α∗
jigj − βjig

∗
j

)
(2.18)

この基底の変換をボゴリューボフ変換という。また、この変換係数 αij , βij をボゴリューボフ係数という。gi

も基底と言えどそれ自身も場の方程式の解なのだから基底 fi, f
∗
i で展開できる。それが式 (2.17)である。式

(2.18)も同様であるが、(gi, fj)が gi を展開しても fi を展開しても等しくならなければならないことから展

開係数がこのようになる。また、モードの規格直交性より

αij = (gi, fj)

βij = −
(
gi, f

∗
j

) (2.19)

となり、また、規格直交条件として ∑
j

(
αikα

∗
jk − βikβ

∗
jk

)
= δij∑

j

(αikβjk − βikαjk) = 0
(2.20)

を満たす。さらに、モード間の変換を説明するだけでなく、生成消滅演算子間の変換もボゴリューボフ係数で

次のように表すことができる。

　

âi =
∑
j

(
αjib̂j + β∗

jib̂
†
j

)
b̂i =

∑
j

(
α∗
ij âj − β∗

ij â
†
j

) (2.21)

2.4 それぞれの基底における真空、および数演算子

Field Operatorϕが

ϕ =
∑
i

(
âifi + â†if

∗
i

)
(2.22)

のように展開されていることから、平坦な時空でのスカラー場の量子化と同様に、生成消滅演算子 âi, â
†
i は

[âi, âj ] = 0[
â†i , â

†
j

]
= 0[

âi, â
†
j

]
= δij

(2.23)

5



を満たすとし、そして消滅演算子 âi によって真空状態 |0f ⟩が

âi |0f ⟩ = 0　　　　 for all i (2.24)

として定義されることとなる。また、時空が平坦な場合と同様に、ヒルベルト空間の基底はこの真空より

|ni⟩ =
1√
ni!

(
â†i

)ni

|0f ⟩ (2.25)

と作られることになる。そして数演算子は

n̂fi = â†i âi (2.26)

と生成消滅演算子 âi, â
†
i を用いて定義される。

一方で、ϕは別の基底 gi を用いて

ϕ =
∑
i

(
b̂igi + b̂†ig

∗
i

)
(2.27)

とも展開されたので、この生成消滅演算子 b̂i, b̂
†
i で上記と全く同じことができる。生成消滅演算子 b̂i, b̂

†
i は[

b̂i, b̂j

]
= 0[

b̂†i , b̂
†
j

]
= 0[

b̂i, b̂
†
j

]
= δij

(2.28)

を満たすとし、そして消滅演算子 b̂i によって真空状態 |0g⟩が

b̂i |0g⟩ = 0　　　　 for all i (2.29)

として定義されることとなる。ヒルベルト空間の基底もこの真空 |0g⟩と生成演算子 b̂†i によって作られる。数

演算子も

n̂gi = b̂†i b̂i (2.30)

と生成消滅演算子 b̂i, b̂
†
i を用いて定義される。

以上のようにして、それぞれの基底 fi, gi ごとにその展開係数として生成消滅演算子が定義されるために、

それぞれの基底 fi, gi ごとに真空 |0i⟩ , |0g⟩および数演算子 n̂fi, n̂gi が定義されることになる。

2.5 真空の不一致と粒子の泡立ち

まず、真空 |0i⟩ , |0g⟩は必ずしも一致しないことが次のように簡単に分かる。すなわち âi |0f ⟩ = 0のとき、

b̂i |0f ⟩が 0になるのか確かめてみると、b̂i を âi とボゴリューボフ係数で表した式 (2.21)より

b̂i |0f ⟩ =
∑
j

(
α∗
ij âj − β∗

ij â
†
j

)
|0f ⟩

=
∑
j

(
0− β∗

ij â
†
j

)
|0f ⟩

= −
∑
j

β∗
ij â

†
j |0f ⟩　 ̸= 0

(2.31)
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ボゴリューボフ変換が生成消滅演算子を混ぜるような変換の形になっているため、ある基底での消滅演算子が

違う基底での生成消滅演算子を含む形で表され、結果としてそこが一般に 0でなくなってしまう。

まず、このようにして真空は ϕをどの基底で展開したかによって本質的に異なる。当然、どの基底での真空

かを表すラベル（たとえば |0f ⟩であれば f）は省略することはできない。さらに、真空が一致しないことか

ら分かるように、違う基底を用いている観測者はお互いの真空に粒子を見いだしてしまう。たとえば真空 |0f ⟩
における基底 g での粒子数期待値を計算すると、

⟨0f |n̂gi| 0f ⟩ =
⟨
0f

∣∣∣b†i bi∣∣∣ 0f⟩
=

⟨
0f

∣∣∣∣∣∣
∑
jk

(
αij â

†
j − βij âj

)(
α∗
ikâk − β∗

ikâ
†
k

)∣∣∣∣∣∣ 0f
⟩

=
∑
jk

(−βij) (−β∗
ik)
⟨
0f

∣∣∣âj â†k∣∣∣ 0f⟩+ 0 + 0 + 0

=
∑
jk

βijβ
∗
ik

⟨
0f

∣∣∣(â†kâj + δjk

)∣∣∣ 0f⟩
=
∑
jk

βijβ
∗
ikδjk ⟨0f | 0f ⟩

=
∑
j

βijβ
∗
ij

=
∑
j

|βij |2　 (̸= 0)

(2.32)

このようにして、別の基底の真空に粒子を見いだしてしまうことになる。これは平坦な時空における「真空」

および「粒子」という概念がそのままの形で一般相対論と合わせることができないことを強く示唆している。

以上をまとめると、「一般の時空では観測者の間で共有する自然な基底が存在せず、それゆえ一般に真空が

異なり、また観測する粒子数も異なるものとなる。」と言える。
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3 ウンルー効果

3.1 加速度運動

　

ここで 2次元ミンコフスキー時空上の等加速度運動を考える。

2次元ミンコフスキー時空ゆえ計量は

ds2 = −dt2 + dx2 (3.1)

である。

等加速度運動は次のように記述できる。

t(τ) = 1
α sinh(ατ)

x(τ) = 1
α cosh(ατ)

(3.2)

ここで、τ は固有時であり、αは一定な加速度である。このように記述できることは次のようにしてわかる。

4 元加速度 aµ の成分は軌道の式 (3.2)よりそれぞれ

at =
d2t(τ)

dτ2
= α sinh(ατ) (3.3)

ax =
d2x(τ)

dτ2
= α cosh(ατ) (3.4)

であり、その大きさは √
aµaµ =

√
−α2 sinh2(ατ) + α2 cosh2(ατ) = α (3.5)

となるためである。軌道の式 (3.2)より

x2(τ) = t2(τ) +
1

α2
(3.6)

が成り立つ。これは図 1 のような双曲線軌道である。ただし式 (3.3)より τ = ±∞で t = ±∞、式（3.4）よ

り x > 0であることに注意する。図から明らかなように x > |t|である。
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𝑡

𝑥
O

𝑥 𝜏 2 − 𝑡 𝜏 2 = 1/𝛼2

𝑡 = ∞

𝑡 = −∞

図 1 加速度運動の軌道（双曲線軌道）

3.2 リンドラー座標系

　

ここで、新たに次の座標系を導入する。

t =
1

a
eaξ sinh(aη) (3.7)

x =
1

a
eaξ cosh(aη) (3.8)

ただし x > |t| ⇔ −t < x < tである。この座標系をリンドラー座標系という。この座標系は次節 3.3で示す

ように、等加速度運動を記述するのに適した座標系である。

式 (3.7)/式 (3.8)より

t/x = tanh aη (3.9)

であり、−t < x < tより −∞ < η < +∞が成り立つ。また、(式 3.8)2ー (式 3.7)2 より

a2(x2 − t2) = e2aξ (3.10)

であり、−t < x < tより −∞ < ξ < +∞となる。合わせてリンドラー座標の定義域は

−∞ < η, ξ < +∞ (3.11)

となる。
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次にリンドラー座標系での計量を求める。定義式

t =
1

a
eaξ sinh(aη) (3.12)

x =
1

a
eaξ cosh(aη) (3.13)

より、

dt =
∂t

∂η
dη +

∂t

∂ξ
dξ = eaξ cosh aη dη + eaξ sinh aη dξ = eaξ (cosh aη dη + sinh aη dξ)

dx =
∂x

∂η
dη +

∂x

∂ξ
dξ = eaξ sinh aη dη + eaξ cosh aη dξ = eaξ (sinh aη dη + cosh aη dξ)

(3.14)

であるから、

ds2 = −dt2 + dx2

= e2aξ
(
− (cosh aη dη + sinh aη dξ)

2
+ (sinh aη dη + cosh aη dξ)

2
)

= e2aξ
(
−
(
cosh2 aη − sinh2 aη

)
dη2 +

(
cosh2 aη − sinh2 aη

)
dξ2
)

= e2aξ
(
−dη2 + dξ2

)
(3.15)

となる。

また、リンドラー座標系は次の図 2の領域の点のみを表せる。点の指定の仕方は次の通りである。ξ を指定

すると、式 (3.10)より、ある一つの双曲線上の点を指定することができるのがわかる。この段階では極座標

系で rを固定したとき、原点から距離 rの点すべてを指定しているのと同じように、双曲線上の点すべてを指

定している。そこで η を指定すると式 (3.9)よりある傾き tan η の直線との交点としてその双曲線上から一点

指定することになる。図 2における矢印はそれぞれ η , ξ が大きくなる向きを表している。その直線は η が等

しい点の集合であり、矢印の向きに行けば行くほど ξ が大きくなっていく。双曲線は ξ が等しい点の集合であ

り、矢印の向きに行けば行くほど η が大きくなっていく。
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𝑡

𝑥
O

I

𝜂

𝜉

図 2 リンドラー座標系

3.3 リンドラー座標と加速度運動

　

3.1の加速度運動をこのリンドラー座標系を用いて記述することを考える。

式 (3.9)、(3.10)、すなわち

　t/x = tanh aη,　　 x2 − t2 =
e2aξ

a2
=

(
eaξ

a

)2

(3.16)

と加速度運動の軌道の式 (3.2)を式 (3.16)のように書いた式

t/x = tanhαη,　　 x2 − t2 =
1

α2
=

(
1

α

)2

(3.17)

を比べれば

η(τ) = α
a τ

ξ(τ) = 1
a ln

(
a
α

)
= (τによらない定数)

(3.18)

と表せることが分かる。これより等加速度という拘束条件を ξ =一定という簡単な形に書けることが分かる。

今、固有時 τ の関数として時空点 t(τ)と x(τ)を指定していた。リンドラー座標を用いることで、t, xとい

う二つのパラメタを介することなく、一つのパラメタ η(τ)で時空点を指定できるようになった。前節 3.2で、

図 2のように η, ξ で時空点を指定するのを見た。そこでは ξ =一定の点は一つの双曲線上の点を表し、そし

て直線の傾きは η に依存し、η = −∞から η = +∞に変化するにつれて傾きが −1から +1へと変化する、

つまり領域を下から上へと掃いていくことを確認した。ξ =一定の点の、ある η の時の時空点はその直線との

11



交点で指定された。今 ξ =一定ゆえ双曲線が一つ指定されている。η = (τ の関数)ゆえ、ある固有時 τ での

時空点はその τ に対応する傾きの直線と双曲線の交点で指定されることとなる。つまり、リンドラー座標系で

の等加速度運動は、その加速度で決まるある双曲線上の固有時をパラメタとする点として記述できるというこ

とである。ここでパラメタ aを a = αと選べば、加速度運動を表すリンドラー座標は

η = τ, ξ = 0 (3.19)

となる。η 座標がそのまま固有時に対応する。以後このパラメタ aでのリンドラー座標系で加速度運動を議論

する。

3.4 リンドラー座標系でのキリングベクトル

リンドラー座標系の計量は式 (3.15)、つまり

ds2 = e2aξ
(
−dη2 + dξ2

)
(3.20)

で与えられた。よって計量はどの成分も η 依存性を持たないので、∂η はキリングベクトルである。今、η は

時間座標であるので、これは timelikeな生成子となることが考えられる。

これをミンコフスキー座標で表すと

∂η =
∂t

∂η
∂t +

∂x

∂η
∂x

= eaξ (cosh(aη)∂t + sinh(aη)∂x)

= a (x∂t + t∂x)

(3.21)

これはミンコフスキー座標での x 方向のブーストのキリングベクトルである。∂η はミンコフスキー座標で

∂η = (ax, at)であるのでこの大きさの２乗は a2(−x2 + t2)である。したがって timelikeである条件はこれが

負であることなので t2 < x2 である。これを図示すると図 3の領域 Iおよび領域 IVのようになる。
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𝑡

𝑥
O

IIV

図 3 キリングベクトルが timelikeな領域

3.5 xが負の領域でのリンドラー座標

ここで −∞ < x < ∞で場 ϕを量子化することを考える。∂η が timelikeな領域である Iおよび IV内で量

子化を行えばよい。

ここまででは領域 Iの時空点のみを考えていた。ここでまた別に領域 IVの時空点を考えなければならない。

領域 IV上の時空点もまたリンドラー座標で与えることを考える。式 (3.7)、(3.8)のリンドラー座標は x > |t|
の時空点を指定できたことを考えると、領域 IV(x < |t|)の時空点を表すには次のようにマイナス符号を付け
ればよい。

t = −1

a
eaξ sinh(aη), x = −1

a
eaξ cosh(aη) (x < |t|) (3.22)

このとき先ほどのリンドラー座標とはマイナス倍だけ違うので式 (3.14)のように計算する dt, dxもマイナス

倍だけ異なり、結果としてその 2乗から得られる ds2 の式は変わらないことになる。つまり計量は領域 Iと同

じく式 (3.15)、つまり

ds2 = e2aξ
(
−dη2 + dξ2

)
(3.23)

で与えられることになる。
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しかし、式 (3.21)の計算から分かるように、キリングベクトルはマイナス倍の影響を受け ∂η = (−ax,−at)

となる。この点が領域 Iとの違いとなる。つまり、図 4 に示すように η 方向 (未来方向)が領域 Iとは逆方向

になっている。

𝑡

𝑥
O

IIV

𝜂

𝜂

図 4 リンドラー座標の η 方向

3.6 ミンコフスキー座標とリンドラー座標での場の量子化

ここでは簡単のため、直線 t = 0、質量m = 0で量子化することを考える。

このときスカラー場の運動方程式は、今ミンコフスキー時空上ということを考えると、式 (2.4)より

　□ϕ = 0　　　 (□ = gµν ∂µ∂ν) (3.24)

となる。ミンコフスキー座標を選ぶのか、リンドラー座標を選ぶのかで計量 gµν が異なる。しかし、式 (3.1)、

式 (3.15)よりどちらの座標も計量の成分に時間成分 (tまたは η)が入っていなかった。そのため静的な時空の

条件式 (2.6)、つまり ∂0 gµν = 0, g0i = 0 を満たし、2.2節の議論より、正負の振動数モード (fω, f
∗
ω)が存

在し、これによって ϕを展開できる。正の振動数モード fω の係数を消滅演算子、負の振動数モード f∗
ω の係

数を生成演算子とする。今、gµν がミンコフスキー座標、リンドラー座標のどちらの場合であっても式 (3.24)

は時間座標と空間座標の偏微分が分離した偏微分方程式になっており、時間空間の変数分離解である平面波解
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𝑡

𝑥
O

IIV
量子化する領域

図 5 量子化する領域

をもつ。具体的に、ミンコフスキー座標では式 (2.5)、つまり

ϕ(x) =

∫
dk√
(2π)2ω

{
â(k)e−i(ωt−kx) + â†(k)e+i(ωt−kx)

}
(3.25)

のように、また、リンドラー座標では

ϕ(x) =

∫
dk√
(2π)2ω

{
b̂(1)(k)e−i(ωη−kξ) + b̂(1)†(k)e+i(ωη−kξ)

}
　　　（x > |t|） (3.26)

ϕ(x) =

∫
dk√
(2π)2ω

{
b̂(2)(k)e−i(ω(−η)−kξ) + b̂(2)†(k)e+i(ω(−η)−kξ)

}
　　　（x < |t|） (3.27)

とできる。（ただし ω =
√
k2 +m2）ここで気を付けるべきは x > |t|では timelikeなキリングベクトルが ∂η

であり +η 方向が時間の正方向となっているために式 (3.26)のように ϕが展開され、x < |t|では timelikeな

キリングベクトルが ∂(−η) = −∂η であり −η 方向が時間の正方向となっているために式 (3.27)のように ϕが

展開されていることである。このような状況を考えて

g
(1)
k =

{ 1√
4πω

e−iωη+ikξ I

0 IV
(3.28)

g
(2)
k =

{
0 I

1√
4πω

e+iωη+ikξ IV
(3.29)
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と g
(1)
k , g

(2)
k を定義すれば、

∂ηg
(1)
k = −iωg

(1)
k

∂(−η)g
(2)
k = −iωg

(2)
k , ω > 0

(3.30)

を満たす基底での、−∞ < x < ∞全体で定義された xを引数とする ϕの展開式

ϕ(x) =

∫
dk
(
b̂
(1)
k g

(1)
k + b̂

(1)†
k g

(1)∗
k + b̂

(2)
k g

(2)
k + b̂

(2)†
k g

(2)∗
k

)
(3.31)

を書くことができる。ここで 2.4での議論と同様に、どの基底で、つまりどの座標で ϕを展開したかにより、

真空や数演算子が異なることになる。ミンコフスキー座標で量子化したときの真空を |0M⟩、リンドラー座標
で量子化した時の真空を |0R⟩と書くことにすると、それは

âk |0M⟩ = 0 (3.32)

b̂
(1)
k |0R⟩ = b̂

(2)
k |0R⟩ = 0 (3.33)

を満たすものとして定義される。そして、2.5 で示したように一般にこれらの真空は一致しないことになる。

さらにここで

h
(1)
k =

1√
2 sinh

(
πω
a

) (eπω/2ag
(1)
k + e−πω/2ag

(2)∗
−k

)
(3.34)

h
(2)
k =

1√
2 sinh

(
πω
a

) (eπω/2ag
(2)
k + e−πω/2ag

(1)∗
−k

)
(3.35)

を考える。すると(
h
(1)
k1

, h
(1)
k2

)
=

1

2
√
sinh

(
πω1

a

)
sinh

(
πω2

a

) [eπ(ω1+ω2)/2a
(
g
(1)
k1

, g
(1)
k2

)
+e−π(ω1+ω2)/2a

(
g
(2)∗
−k1

, g
(2)∗
−k2

)]

=
1

2
√
sinh

(
πω1

a

)
sinh

(
πω2

a

) [eπ(ω1+ω2)/2aδ (k1 − k2) +e−π(ω1+ω2)/2aδ (−k1 + k2)
]

=
eπω1/a − e−πω1/a

2 sinh
(
πω1

a

) δ (k1 − k2)

=δ (k1 − k2)

(3.36)

など満たしており、基底となりうる。この基底によって

ϕ =

∫
dk
(
ĉ
(1)
k h

(1)
k + ĉ

(1)†
k h

(1)∗
k + ĉ

(2)
k h

(2)
k + ĉ

(2)†
k h

(2)∗
k

)
(3.37)

と展開できる。
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3.7 ウンルー効果の導出

ここで b̂k と ĉk との間には

b̂
(1)
k = 1√

2 sinh(πω
a )

(
eπω/2aĉ

(1)
k + e−πω/2aĉ

(2)†
−k

)
b̂
(2)
k = 1√

2 sinh(πω
a )

(
eπω/2aĉ

(2)
k + e−πω/2aĉ

(1)†
−k

) (3.38)

という関係がある。また、(t, x)複素平面上で虚軸の正の部分にブランチカットを入れることにより、モード

h
(1,2)
k は、正の振動数のミンコフスキーモード fk で表現できることがわかり、真空がミンコフスキー座標で

の量子化のものと一致する、すなわち

ĉ
(1)
k |0M⟩ = ĉ

(2)
k |0M⟩ = 0 (3.39)

である。よってリンドラー座標での数演算子の、ミンコフスキー座標での真空期待値を計算すると、⟨
0M

∣∣∣n̂(1)
R (k)

∣∣∣ 0M⟩ =
⟨
0M

∣∣∣b̂(1)†k b̂
(1)
k

∣∣∣ 0M⟩

=
1

2 sinh
(
πω
a

) ⟨0M ∣∣∣e−πω/aĉ
(1)
−k ĉ

(1)†
−k

∣∣∣ 0M⟩

=
e−πω/a

2 sinh
(
πω
a

)δ(0)
=

1

e2πω/a − 1
δ(0)

(3.40)

となる。これは加速度 aに比例した温度

T =
a

2π
(3.41)

のプランク分布である。よって、等加速度運動している観測者をリンドラー座標で記述すれば、その観測者は

ミンコフスキー真空にプランク分布を見出すこととなることが示された。これをウンルー効果という。
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4 ホーキング輻射

ここでは様々あるホーキング輻射の導出のうち、ウンルー効果を用いたホーキング輻射の導出を示す。

シュワルツシルト計量を用いてシュワルツシルト時空上を自由落下する粒子の加速度を計算すると

α =
GM

r3/2
√
r − 2GM

(4.1)

となる。よって事象の地平面 r = 2GM に非常に近い観測者 (r − 2GM ≪ 2GM)の場合、曲率の影響を無視

することができる。すなわち事象の地平面近傍では平坦な時空にみなすことができる。

ここで、事象の地平面近傍に仮想的に 2人の観測者 Aと Bを考える。Aはブラックホールの重力によって

自由落下していくとし、B は空間に静止しているとする。そして、A は真空状態をもつとする。(図 6 参照)

すると自由落下する Aの局所慣性系をとることができ、その慣性系で考えると、Bは加速度運動しているよ

うに見える。この時、ウンルー効果により、加速度運動している Bは慣性系の真空に温度

T =
a

2π
(4.2)

のプランク分布を見出すこととなる。(図 7参照) このプランク分布を赤方偏移したものを遠く離れた我々は

みることとなる。（図 8参照）これはホーキング輻射と呼ばれ、それが導出できたことになる。

また、赤方偏移された温度を計算すると

T =
1

2π

1

4GM
(4.3)

となる。これはホーキングが導出したホーキング温度と係数まで含めて一致する。

𝑟

𝑟 = 2𝐺𝑀

A B

ブラックホール
質量𝑀

𝛼
加速度

自由落下

3/34
図 6 ホーキング輻射の導出:仮定
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A

B

Aの
局所慣性系

加速度 𝛼

ウンルー効果より
BはAの真空に
プランク分布の
粒子を見る

4/34
図 7 ホーキング輻射の導出:Ａの局所慣性系

𝑟 = 2𝐺𝑀

A B

𝛼

C
赤方偏移

𝑇 =
1

2𝜋

1

4𝐺𝑀

ブラック
ホール
質量𝑀

𝑟

5/34
図 8 ホーキング輻射の導出:赤方偏移
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5 補遺

ここでは簡単にシュワルツシルトブラックホールの説明を行う。

5.1 シュワルツシルト解

球対称性のある真空解として

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2　 (5.1)

　　　　　 dΩ2 = dθ2 + sin2 θdϕ2 (5.2)

という計量が存在する。これをシュワルツシルト解という。この計量は明らかに r = 2GM で grr 成分が、ま

た r = 0で gtt 成分が発散している。つまりこの計量は r = 0, r = 2GM に特異点を持つ。しかし r = 2GM

の方は実は座標の選び方によるものであり、以下に示すように、適切に座標変換することによって取り除くこ

とができる。そのため見かけ上の特異点とよばれる。

5.2 亀座標系

シュワルツシルト解の見かけ上の特異点を取り除くための座標を探す。

シュワルツシルト解における動径ヌル測地線 (dθ = dϕ = 0, ds2 = 0)を考える。

　 0 = ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2

= −
(
1− 2GM

r

)(
dt2 −

(
1− 2GM

r

)−2

dr2

)

= −
(
1− 2GM

r

)(
dt−

(
1− 2GM

r

)−1

dr

)(
dt+

(
1− 2GM

r

)−1

dr

) (5.3)

ここで

dr∗ =

(
1− 2GM

r

)−1

dr (5.4)

と dr∗ 定義すると、

0 = ds2 = −
(
1− 2GM

r

)
(dt− dr∗)(dt+ dr∗) (5.5)

となる。よって動径ヌル測地線は

dt

dr∗
= ±1 (5.6)

t = ±r∗ + const. (5.7)
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を満たす。ミンコフスキー座標の r の代わりにこの r∗ を用いた座標系（t, r∗, θ, ϕ）を亀座標系という。この

r∗ と r との関係を求めるには式（5.4）、すなわち

dr∗ =

(
1− 2GM

r

)−1

dr =
r

r − 2GM
dr =

(
1 +

2GM

r − 2GM

)
dr (5.8)

を積分し、適当に積分定数をとれば良く、

　 r∗ = r + 2GM ln
( r

2GM
− 1
)

(5.9)

となる。したがって、亀座標系のメトリックはこの r を用いて

　 ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)
dr∗2 + r2dΩ2 (5.10)

となる。式（5.10）から分かるように、亀座標系を採用することによって、見かけ上の特異点（r = 2GM）を

取り除くことができた。式 (5.9)より、見かけ上の特異点は亀座標系では r∗ = −∞に対応している。ここで
亀座標系（t, r∗)における光円錐を書いてみると、式 (5.6)から分かるように、次のような全ての時空点で円錐

の斜面の傾きが等しい光円錐となる。

𝑡

𝑟*

𝑟 = 2𝐺𝑀
𝑟* = −∞

図 9 亀座標系における光円錐
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5.3 エディントンーフィンケルステイン座標系とブラックホール

次に、亀座標系を元にし、ヌル測地線を記述するのにさらに適した座標系を導入する。というのも、シュワ

ルツシルト計量での見かけの特異点 r = 2GM での振る舞いが見たいにも関わらず、メトリックが発散しない

ように導入した亀座標ではその点が −∞となってしまい見づらいためである。
動径ヌル測地線は

0 = ds2 = −
(
1− 2GM

r

)
(dt− dr∗)(dt+ dr∗) (5.11)

を満たした。ここで、

du = dt− dr∗

dv = dt+ dr∗
(5.12)

と定義すると、これは

　 0 = ds2 = −
(
1− 2GM

r

)
du dv (5.13)

と書ける。したがって動径ヌル測地線の方程式 dt = ±dr∗ はこの u, v を用いて

du = 0　 or　 dv = 0 (5.14)

とさらに簡潔に書ける。du, dv の定義式（5.12）を積分すれば、

v = t+ r∗

u = t− r∗
(5.15)

と、u, v と t, r∗ との関係が得られる。積分系での動径ヌル測地線

　 u = const.　 or　 v = const. (5.16)

は当然亀座標系でのそれである式 (5.7)に一致する。ただし式 (5.16)において、どちらが外向きのヌル測地線

であるかは、定義 (5.12)あるいは (5.16)から

u = const.　：外向き　

v = const.　：内向き
(5.17)

であることに注意する。ここで、時間座標を v のみにするため、uを消去することを考える。式 (5.12)の差

をとって

du = dv − 2dr∗ (5.18)

よって

du dv = (dv − 2dr∗) dv

= dv2 − 2dv dr∗
(5.19)
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これより duを消去し、式（5.8）を用いると、式 (5.13)は

0 = ds2 = −
(
1− 2GM

r

)
dv2 + 2dv

(
1− 2GM

r

)
dr∗　

= −
(
1− 2GM

r

)
dv2 + 2 dv dr

(5.20)

となる。r∗ ではなく r を用いて書けていることに注意する。dv = 0が内向きであったことを思い出せば、外

向きは dv ̸= 0であり、それゆえ動径ヌル測地線は

dv

dr
=

{
0 (内向き)

2
(
1− 2GM

r

)−1
(外向き)

(5.21)

を満たす。こうしてヌル測地線を記述するのにさらに適した座標が得られた。

ここで、この座標系でヌル測地線の振る舞いについて考えてみる。r < 2GM で外向きの測地線の dv/drが

負であることから、dv > 0 のとき dr < 0 となってしまうことが分かる。v は時間座標であったので、これ

は r < 2GM の領域では外向きに発せられた光でさえも、その領域から出ることができないということを意味

する。

この座標系の光円錐を見るとこの状況がさらによく分かる。内向きの測地線の dv/dr は r によらず 0であ

るのに対し、外向きの dv/dr が r の増加関数のため光円錐は r が小さくなるにつれてしぼんでいくことにな

る。十分大きな rから rを少しずつ小さくしていくと r＝ 2GM でその傾きが垂直となる。よって r＝ 2GM

より r が小さくなってしまうと r が小さくなる向きにしか光円錐は向かなくなる。光はこの光円錐の面上に、

質量を持つ物体は timelikeな光円錐の内側のみに世界線をもつので、r < 2GM の領域に一度入ってしまうと

二度と外には出られなくなってしまう。この r < 2GM の領域をブラックホールといい、その表面を事象の地

平面という。*1

𝑣

𝑟

𝑟 = 2𝐺𝑀𝑟 = 0

𝑣 = const.

図 10 エディントンーフィンケルステイン座標系における光円錐

（v, r, θ, ϕ）の座標系をエディントンーフィンケルステイン座標系といい、そのメトリックは以上より

ds2 = −
(
1− 2GM

r

)
dv2 + (dvdr + drdv) + r2dΩ2 (5.22)

となる。この座標系も亀座標系と同じく、シュワルツシルト座標系での見かけの特異点 r = 2GM で正則であ

ることに注意する。

*1 シュワルツシルト時空のみを考える上ではこのような定義で十分である。ニュートン力学では「脱出速度が光速となる天体」と定
義されることもあるが、その定義はここでの定義と合致しない。ニュートン力学でのそのブラックホールの定義は「加速度を外か
ら与えることなく抜け出せること」を意味するが、一般相対性理論でのこの定義は「加速度を外から与えたとしても抜け出せない」
というより強い条件になっているためである。
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6 まとめ

本論文ではウンルー効果によってホーキング輻射を導出した。

始めに曲がった時空上でのスカラー場の量子化の問題として、通常の場の量子論とは異なり、一般の時空で

は観測者の間で共有する自然な基底が存在せず、それゆえ一般に真空が異なり、また観測する粒子数も異なる

ものとなることを見た。

次に、2次元ミンコフスキー時空上の等加速度運動を考え、ミンコフスキー時空の慣性系に対して加速度運

動している観測者は、慣性系の真空にある温度のプランク分布を見出すというウンルー効果を導出した。

そしてウンルー効果をシュワルツシルト計量ブラックホールの事象の地平面に直接応用することでホーキン

グ輻射を導出した。ホーキング温度と係数まで含めて一致する温度のプランク分布を導出することができた。

ホーキング輻射によってブラックホールはエネルギーを失いつづけることになる。これがブラックホールの

蒸発とよばれる現象になる。これによりブラックホールエントロピーやホログラフィーなどといった様々な研

究分野に関連することとなる。

これにより、本論文で導出したホーキング輻射は量子重力理論だけに留まらず、様々な最先端の研究領域に

おいて重要な現象であると言える。
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