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はじめに

　重力波とは、1916年にアインシュタインによって予言された光速で伝わる時空
間の歪みである。非常に小さい現象であるため観測が難しく、2015年 9月 14日
にレーザー干渉計重力波天文台 LIGOによって世界で初めて重力波が観測される
ことになった。重力波はその性質から波源自体の情報や重力の性質を理解する手
掛かりになると考えられている。そこで、今回の論文で重力波の理論を紹介し、
重力波の理論波形を導いて考察することを目的とした。
　ところで、重力波は結びつきが非常に弱いので物質と出会っても物質をほとん
ど変形させず、そのまま通過してしまう。また、結びつきが弱いということは発
生する効率も低いということであり、重力波の測定が難しいことを意味している。
このような重力波特有の性質を理論的に、そして段階的に見ていくため、本論文
では三部構成に分割して重力波を議論していくことにした。まず第一章では一般
相対性理論を必要な部分だけ簡単にまとめた。そこでは重力を表す方程式である
アインシュタイン方程式を導出するところまで説明した。第二章では一般相対性
理論で扱った数学や記号を用いて最も単純な重力波の模型である、線形重力波を
議論した。理論が線形であるということは時空間の計量が背景計量と計量摂動に
分解することができるという論理に基づいて議論を展開した。そして重力波振幅
を求めることはアインシュタイン方程式を解くことに帰着するということを言及
し、それを背景計量がミンコフスキー計量である場合において解いて重力波振幅
の表式を導出した。また、重力波の性質を理解するために簡単な具体例を提示し
た後、重力波の光度や偏極を議論した。最後に第三章では実用性を兼ねて、背景
計量がミンコフスキー計量ではない実際の重力波を議論する場合にどんな手法を
取るのかを紹介し考察した。
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この論文では記法を次のように採る：

単位系
c = G = 1 , [kg] = [m] = [s] (1)

スカラー
ϕ (2)

ベクトル（反変ベクトル）
Aµ (3)

一次形式（共変ベクトル）
Aµ (4)

(k,l)テンソル
Aµ1µ2···µk

ν1ν2···νl
(5)

計量（metric）

gµν =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

 (6)

gµνgνσ = δµσ (7)

線素
ds2 = gµνdx

µdxν (8)

ミンコフスキー計量（平坦計量）

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (9)

ヌルベクトル lµ

lµl
µ = 0 (10)

反対称記号

A[µν] =
1

2
(Aµν −Aνµ) (11)

対称記号

B(µν) =
1

2
(Bµν +Bνµ) (12)



Contents

1 一般相対性理論 6

1.1 共変微分 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 クリストッフェル記号 . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 測地線の方程式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 リーマンテンソル . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 曲がった時空間の物理 . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 ニュートン極限 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 アインシュタイン方程式 . . . . . . . . . . . . . . . . . . . . . . . 16

2 線形重力波 20

2.1 線形アインシュタイン方程式 . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 ゲージ変換 . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 重力波の生成 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 質量の等しい二つの星の連星からの重力波（円軌道） . . . 26

2.2.2 質量が異なる二つの星の連星からの重力波（円軌道） . . . 28

2.2.3 質量が異なる二つの星の連星からの重力波 (楕円軌道) . . . 29

2.3 四重極公式 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 トランスバース・トレースレスゲージ (TTゲージ) . . . . . . . . 33

2.5 TTゲージの意味 . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 重力波の解析 39

3.1 連星軌道 (Inspiral)フェイズ . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 PN近似の下での場の方程式 . . . . . . . . . . . . . . . . . 40

3.1.2 PN漸近場 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3 点粒子の系に対する PN近似 . . . . . . . . . . . . . . . . 49

3.1.4 Einstein-Infeld-Hoffmann方程式 . . . . . . . . . . . . . . 50

3.2 合体 (merging)フェイズ . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 リングダウン (ring down)フェイズ . . . . . . . . . . . . . . . . . 52

3.3.1 Schwarzschildブラックホールの線形摂動 . . . . . . . . . . 52

3.3.2 Oddパリティ摂動：Regge-Wheeler方程式 . . . . . . . . . 54

3.3.3 Evenパリティ摂動：Zerilli方程式 . . . . . . . . . . . . . 55

3.3.4 Kerrブラックホールの線形摂動 . . . . . . . . . . . . . . . 57

3.3.5 アインシュタイン方程式のテトラッド表現 . . . . . . . . . 57

3.3.6 Newman-Penrose formalism . . . . . . . . . . . . . . . . . 59

3.3.7 Teukolsky方程式 . . . . . . . . . . . . . . . . . . . . . . . 59

まとめ 61

4



CONTENTS 5

A 楕円運動の計算 62

B PN近似の計算 65

C Schwarzschild解の導出 68

D Kerr解の導出 75

謝辞 90

参考文献 91



Chapter 1

一般相対性理論

　一般相対性理論は重力を記述することを目的とした理論であり、曲がっている
時空間の幾何学である。そこでは重力は時空間の曲率と結びつくと考えられてい
る。そして一般相対性理論は次の等価原理に基づく：

局所的な観測によって重力場を検出することは不可能である。それゆえに時空間
中の小さな領域では、物理法則は特殊相対論のそれにまとめられる。

これを利用して、次のように考える。座標不変な形式―テンソル形式で方程式を
書くことが出来れば、平らな時空間（ミンコフスキー空間）の慣性座標系で確か
な物理法則は曲がった時空間でも正しいままである。これを特にミニマルカップ
リング原理という。

1.1 共変微分

　慣性座標系の平坦な空間では偏微分演算子 ∂µ は（k,l）テンソルを（k,l+1）テ
ンソルまで写像する。それは独立変数に線形的に作用し、そのテンソル積はライ
プニッツ則に従う。しかし、偏微分によって与えられる写像は元の座標系に依存
してしまう。それゆえに、曲がった空間で座標系に依存しないような微分演算を
考える場合は、偏微分演算子の関数であるが座標とは独立であるような演算子を
考えなくてはならない。その演算子のことを共変微分演算子 ▽µ という。より一
般的には、テンソルが平行移動したときテンソルの変化率を定量化する演算を共
変微分という。平行移動はある経路に沿ってベクトルを動かしながら、その過程
の初めから終わりまでそれを一定に保つという概念である。
　これと結び付けて三次元球面において共変微分の概念を直観的に説明すること
ができる。Figure1.1を見よ。まずある赤道上のベクトルを考え、それがある経度
の線に沿うように向いているとする。このベクトルを経度の線に沿って北極まで
平行移動させる。次に、球の中心に原点を取り、角度 θ でベクトルを赤道に沿っ
て平行移動し、そして先程と同じようにそのベクトルを北極まで経度の線に沿っ
て動かす。Figure1.1で示したように、二つのベクトルは、二つの経路に沿って
平行移動し、互いに異なる値を持って同じ目的地に到着することがわかる。従っ
て、共変微分は”ベクトルを一定に保つこと”の概念の曲がった空間への一般化
に伴って生じるのである。

6



1.1. 共変微分 7

Figure 1.1: 球面上のベクトルの平行移動

それゆえに共変微分も独立変数に線形的に作用し、ライプニッツ則に従うと
する。そして一般化として考えられることは、まず偏微分を取り、そこに結果を
共変にする補正を加えるということである。そこで、具体的にベクトル V ν の共
変微分に対するこの意味を考えよう。これは単純に、ある方向 µに対し、共変微
分 ▽µ が偏微分 ∂µ と n × n行列 (Γµ)

ρ
σ によって指定された補正を加えたものに

より与えられるということを意味している。この括弧を落とし、適当な行列 Γρ
µσ

（これを接続係数という）で書くとすると

▽µV
ν = ∂µV

ν + Γν
µλV

λ (1.1)

を得る。もしこれがベクトルの共変微分に対する表式であるなら、左辺が (1,1)テ
ンソルであることから右辺も (1,1)テンソルであるという要請が生じる。これよ
り接続係数 Γν

µλ の変換の性質を決めることができる。その要請より変換則が

▽µ′V ν′
=

∂xµ

∂xµ′

∂xν
′

∂xν
▽µV

ν (1.2)

であってほしいということである。これと

▽µ′V ν′
= ∂µ′V ν′

+ Γν′

µ′λ′V λ′
(1.3)

を比較し、この方程式が任意のベクトル V λ に対して正しくなければならないと
いうことから

Γν′

µ′λ′ =
∂xµ

∂xµ′

∂xλ

∂xλ′

∂xν
′

∂xν
Γν
µλ − ∂xµ

∂xµ′

∂xλ

∂xλ′

∂2xν
′

∂xµ∂xλ
(1.4)

となるとわかる。従って二項目の存在により、接続係数はテンソルではない。し
かし係数がテンソルであることを要求していないのでこれは数学的に全く問題は
ない。全体としてテンソルのように変換すれば良いのである。さて、ベクトルに
対する共変微分の表式が得られたので、次に一次形式についての共変微分を考え
る。一般に

▽µων = ∂µων + Γ̃λ
µνωλ (1.5)

のように書くことができる。ここで Γ̃λ
µν は各 µに対する新しい行列の組である。

テンソルとして ▽µων が変換しなくてはならないので、これを実現するために次
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の二つの性質を導入する。

・縮約する順序が交換できる：▽µ(T
λ
λρ) = (▽T )µλ

λρ

・スカラーの共変微分はスカラーの偏微分になる：▽µϕ = ∂µϕ

一つ目の性質はクロネッカーのデルタ（恒等写像）が共変的に定数である（▽µδ
λ
σ =

0）という主張と等しい。一つ目の性質と共変微分もライプニッツ則に従っていた
ことに注目して、ある一次形式 ωµ とベクトル V µ の積 ωλV

λ により定義された
スカラーの共変微分を取ることができ、

▽µ(ωλV
λ) = (▽µωλ)V

λ + ωλ(▽µV
λ)

= (∂µωλ)V
λ + Γ̃σ

µλωσV
λ + ωλ(∂µV

λ) + ωλΓ
λ
µρV

ρ (1.6)

を得る。しかし、ωλV
λ はスカラーだから、二つ目の性質より偏微分によっても

与えられなければならない：

▽µ(ωλV
λ) = ∂µ(ωλV

λ)

= (∂µωλ)V
λ + ωλ(∂µV

λ) (1.7)

これは接続係数を持つ項どうしが打ち消し合うことを示している。ゆえに、和を
取っている添え字（ダミー添え字）を整理して

0 = Γ̃σ
µλωσV

λ + Γσ
µλωσV

λ (1.8)

でなければならず、ωσ と V λ がともに任意なので

Γ̃σ
µλ = −Γσ

µλ (1.9)

となる。従って一次形式の共変微分は

▽µων = ∂µων − Γλ
µνωλ (1.10)

である。この結果より任意のランクのテンソルの共変微分についても書き下すこ
とができる：

▽σT
µ1µ2···µk

ν1ν2···νl
= ∂σT

µ1µ2···µk
ν1ν2···νl

+ Γµ1

σλT
λµ2···µk

ν1ν2···νl
+ Γµ2

σλT
µ1λ···µk

ν1ν2···νl

− Γλ
σν1

Tµ1µ2···µk
λν2···νl

− Γλ
σν2

Tµ1µ2···µk
ν1λ···νl

(1.11)

これが共変微分に対する一般表式である。

1.2 クリストッフェル記号

　一般相対性理論の幾何学を構成するため、接続係数を時空間の計量 gµν に関し
て表すことを考えよう。次の二つの性質を新たに導入する：

・torsion-free： Γλ
µν = Γλ

νµ

・metric compatibility: ▽µg
µν = 0
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二つ目の性質により、共変微分と指数の上げ下げが交換する。従ってベクトル V ν

に対して
gµλ▽ρV

λ = ▽ρ(gµλV
λ) = ▽ρVµ (1.12)

が成り立つ。
　さて、二つ目の性質を用いて次の三つの方程式を作ることができる：

▽ρgµν = ∂ρgµν − Γλ
ρµgλν − Γλ

ρνgµλ = 0

▽µgνρ = ∂µgνρ − Γλ
µνgλρ − Γλ

µρgνλ = 0 (1.13)

▽νgρµ = ∂νgρµ − Γλ
νρgλµ − Γλ

νµgρλ = 0

第一式から第二式、第三式を引き、一つ目の性質を使うと

∂ρgµν − ∂µgνρ − ∂νgρµ + 2Γλ
µνgλρ = 0 (1.14)

これに gσρ を掛けることにより、接続係数に対して解くことが出来て

Γσ
µν =

1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) (1.15)

を得る。上の二つの性質を課すことで一意的に接続係数の形を決めることができ
た。このように計量から導かれた接続係数をクリストッフェル記号（あるいはク
リストッフェル接続）という。

1.3 測地線の方程式

　測地線の方程式を導く準備として、平行移動の概念を曲がった空間におけるテ
ンソルに応用する。曲線 xµ(λ)を仮定し、平坦な空間でこの曲線に沿ったテンソ
ル Tµ1µ2···µk

ν1ν2···νl
の矛盾しない要請は単に成分が定数であることである：

d

dλ
Tµ1µ2···µk

ν1ν2···νl
=
dxµ

dλ

∂

∂xµ
Tµ1µ2···µk

ν1ν2···νl
= 0

曲がった空間においてこのテンソル的な性質をつくるために、この方程式の偏微
分を共変微分によって置き換える。そこで次の方向微分を定義する：

D

dλ
=
dxµ

dλ
▽µ (1.16)

これは写像であり、(k,l)テンソルから (k,l)テンソルまでの経路に沿ってのみ定
義される。それから経路 xµ(λ)に沿ったテンソル Tの共変微分が消えるという要
請になるようにその Tの平行移動を定義する：(

D

dλ
T

)µ1µ2···µk

ν1ν2···νl

≡ dxσ

dλ
▽σT

µ1µ2···µk
ν1ν2···νl

= 0 (1.17)

この方程式を平行移動方程式という。ベクトルに対するこの方程式は

d

dλ
V µ + Γµ

σρ

dxσ

dλ
V ρ = 0 (1.18)

という形式をとる。平行移動方程式は初期値問題で決まる一階微分方程式として見
ることができる。そのため、経路に沿ったある点でのテンソルを仮定し、式 (1.17)
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を解くような、経路に沿った別の点までのテンソルへの一意的な連続性がある。
さらに上の表式から平行移動の概念は明らかに接続に依存しているとわかる。と
ころで計量に対しては

D

dλ
gµν =

dxσ

dλ
▽σgµν = 0 (1.19)

となる。これはベクトルの内積が平行移動に対して保存することを示している。
具体的に書くと、ベクトル V µとW ν の内積が曲線 xσ(λ)に沿って平行移動した
とすると

D

dλ
(gµνV

µW ν) = gµν

(
D

dλ
V µ

)
W ν + gµνV

µ

(
D

dλ
W ν

)
= 0 (1.20)

となって、これは metric-compatible接続に関する平行移動がベクトルのノルム
や直交性などを保存することを表している。
　さて、測地線の話に戻ろう。測地線は曲がった空間におけるユークリッド空間
の直線の概念の一般化である。ふつう直線はある二点間の最短距離である。さら
に直線は良い定義を持っている；直線はそれ自身の接ベクトル（曲線や曲面に接
するようなベクトル）が平行移動した距離である（そうでなければ最短距離にな
らない）。従って、経路 xµ(λ)に対する接ベクトルは dxµ

dλ であるから、これが平
行移動する状況は

D

dλ

dxµ

dλ
= 0 (1.21)

あるいは
d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0 (1.22)

これが測地線の方程式である。平坦な空間に対する表式もすぐに得られて、ク
リストッフェル記号はその定義 (1.15)から Γµ

ρσ = 0となって測地線の方程式は
d2xµ

dλ2 = 0となる。これは確かに直線に対する方程式となっている。

1.4 リーマンテンソル

　 1.1節で共変微分に対してライプニッツ則が成立することを要請したが、共変
微分の順序の交換に関する要請は何もしていなかった。共変微分はこの点でも微
分とは異なるのである。その振る舞いがどのようになるのかを見るため、次の計
算を行う：

[▽µ,▽ν ]V
ρ = ▽µ▽νV

ρ − ▽ν▽µV
ρ (1.23)

偏微分の順序は交換すること、クリストッフェル記号は下付き添え字に関して交
換すること（torsion-free）に注意して

▽µ▽νV
ρ − ▽ν▽µV

ρ = ∂µ(▽νV
ρ)− Γλ

µν▽λV
ρ + Γρ

µσ▽νV
σ

− ∂ν(▽µV
ρ) + Γλ

νµ▽λV
ρ − Γρ

νσ▽µV
σ

= ∂µ∂νV
ρ + (∂µΓ

ρ
νσ)V

σ + Γρ
νσ∂µV

σ + Γρ
µσ∂νV

σ + Γρ
µσΓ

σ
νλV

λ

− ∂ν∂µV
ρ − (∂νΓ

ρ
µσ)V

σ − Γρ
µσ∂νV

σ − Γρ
νσ∂µV

σ − Γρ
νσΓ

σ
µλV

λ

= (∂µΓ
ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ)V

σ
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ここで左辺はテンソルであるから、右辺もテンソルでなくてはならない。任意の
V ρ について成り立つから、商の定理より ()内はテンソルである。そこで結果を

[▽µ,▽ν ]V
ρ = Rρ

σµνV
σ (1.24)

とおこう。この Rρ
σµν をリーマンテンソルという。すなわち

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ (1.25)

である。また、この表式から明らかにリーマンテンソルの後ろ二つの添え字につ
いて反対称であるとわかる：

Rρ
σµν = −Rρ

σνµ (1.26)

　次にリーマンテンソルの性質を見ていく。4つの指数を持つリーマンテンソル
は n次元空間で n4 個の独立な成分を持つ。しかし反対称性 (1.26)により後ろ二
つの添え字は独立な値を n(n−1)

2 個だけを持つ。従って全体として n2 × n(n−1)
2 個

の独立な成分を持つ。しかし他にも対称性が存在する。独立な成分についてさら
なる議論を進めるために、添え字がすべて下付きのリーマンテンソルを考える：

Rρσµν = gρλR
λ
σµν (1.27)

　ここで議論を簡単にするために局所慣性座標系を選ぶ。局所慣性座標系にある
テンソルをハット付きで表す；Aµ̂ν̂ と書く。この系を簡単に説明すると、曲がっ
た空間中である点 pのまわりで局所的に慣性系が取れるという場合を表している。
すなわち、計量がミンコフスキー計量で書くことができ、その一階微分が 0に等
しいということである（二階微分は変曲率を表すから 0である必要はない）：

gµ̂ν̂(p) = ηµ̂ν̂ , ∂σ̂gµ̂ν̂(p) = 0 (1.28)

（ただし、∂ρ̂∂σ̂gµ̂ν̂(p) ̸= 0)

この系を選ぶことで不都合が生じることはない。なぜならテンソル形式で書かれ
ている限り、座標変換により任意の系に移ることができるからである。

　リーマンテンソルの議論に戻ろう。点 pで確立した局所慣性座標 xµ̂にあるリー
マンテンソルの成分を考える。従って、クリストッフェル記号自身は消えるが、
その導関数は消えない。それゆえに

Rρ̂σ̂µ̂ν̂(p) = gρ̂λ̂(∂µ̂Γ
λ̂
ν̂σ̂ − ∂ν̂Γ

λ̂
µ̂σ̂)

= gρ̂λ̂∂µ̂

{
1

2
gλ̂τ̂ (∂ν̂gσ̂τ̂ + ∂σ̂gτ̂ ν̂ − ∂τ̂gν̂σ̂)

}
− gρ̂λ̂∂ν̂

{
1

2
gλ̂τ̂ (∂µ̂gσ̂τ̂ + ∂σ̂gτ̂ µ̂ − ∂τ̂gµ̂σ̂)

}
=

1

2
(∂µ̂∂σ̂gρ̂ν̂ − ∂µ̂∂ρ̂gν̂σ̂ − ∂ν̂∂σ̂gρ̂µ̂ + ∂ν̂∂ρ̂gµ̂σ̂)

(1.29)

となる。最初の行で Γτ̂
µ̂ν̂(p) = 0を用いた。その後、∂µ̂gλ̂τ̂ = 0を用い、最後に微

分の交換性を用いた。この表式から Rρσµν の性質を見ることができる：
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前二つの添え字について反対称

Rρσµν = −Rσρµν (1.30)

後二つの添え字について反対称 (既に (1.26)で示してある)

Rρσµν = −Rρσνµ (1.31)

前二つの添え字の組と後二つの添え字の組の交換の下で不変

Rρσµν = Rµνρσ (1.32)

ここでテンソルの座標不変性からハットは除いてある。さらに、後三つの添え字
のサイクリックな置換を足し合わせるとそれらは消えるとわかる：

Rρσµν =
1

2
(∂µ∂σgρν − ∂µ∂ρgνσ − ∂ν∂σgρµ + ∂ν∂ρgµσ)

Rρµνσ =
1

2
(∂ν∂µgρσ − ∂ν∂ρgσµ − ∂σ∂µgρν + ∂σ∂ρgνµ)

Rρνσµ =
1

2
(∂σ∂νgρσ − ∂σ∂ρgµν − ∂µ∂νgρσ + ∂µ∂ρgνσ)

∴ Rρσµν +Rρµνσ +Rρνσµ = 0 (1.33)

(1.31)より、(1.33)が後三つの添え字の反対称部分の消去と等しいことがわかる：

Rρ[σµν] = 0 (1.34)

　リーマンテンソルの独立な成分の議論を再開する。Rρσµν が前二つ、後二つで
反対称、そしてそれらの二つの組の交換で対称であるということは、対称行列
R[ρσ][µν]としてリーマンテンソルを考えることを意味する。これは、全体として
m×m対称行列で ρσと µν の組に対して n× nの反対称行列であることを表し
ている。m×m対称行列は m(m+1)

2 個の独立な成分を持つのに対し、n× n反対

称行列は n(n−1)
2 個の独立な成分を持つ。それゆえに

1

2
m(m+ 1) =

1

2

[
1

2
n(n− 1)

] [
1

2
n(n− 1) + 1

]
=

1

8
(n4 − 2n3 + 3n2 − 2n) (1.35)

の独立な成分を持つ。さらに (1.55)の帰結としてリーマンテンソルの反対称部分
全体が消えるという事実を扱わなくてはならない：

R[ρσµν] = 0 (1.36)

(
∵ R[ρσµν] =

2

4!
[(Rρσµν +Rρµνσ +Rρνσµ)− (Rρνµσ +Rρµσν +Rρσνµ)] =

1

12
Rρ[σµν]

)
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四つの添え字を持つ全体で反対称なテンソルは n(n−1)(n−2)(n−3)
4! 個の項を持ち、

それゆえにこの分だけ独立な成分の数が減る：

1

8
(n4 − 2n3 + 3n2 − 2n)− 1

24
n(n− 1)(n− 2)(n− 3) =

1

2
n2(n2 − 1) (1.37)

これがリーマンテンソルの独立な成分の数である。これより今考えている 4次元
ではリーマンテンソルは 20個の独立な成分を持つとわかる。

　リーマンテンソルの代数的な対称性に加えて、異なる点での相対値に制限を加
える微分恒等式が従う。リーマンテンソルの共変微分を局所慣性座標系で評価す
ると

▽λ̂Rρ̂σ̂µ̂ν̂ = ∂λ̂Rρ̂σ̂µ̂ν̂

=
1

2
∂λ̂(∂µ̂∂σ̂gρ̂ν̂ − ∂µ̂∂ρ̂gν̂σ̂ − ∂ν̂∂σ̂gρ̂µ̂ + ∂ν̂∂ρ̂gµ̂σ̂) (1.38)

となる。そして前三つの添え字のサイクリックな置換の和を考えると

▽λ̂Rρ̂σ̂µ̂ν̂ + ▽ρ̂Rσ̂λ̂µ̂ν̂ + ▽σ̂Rλ̂ρ̂µ̂ν̂

=
1

2
(∂λ̂∂µ̂∂σ̂gρ̂ν̂ − ∂λ̂∂µ̂∂ρ̂gν̂σ̂ − ∂λ̂∂ν̂∂σ̂gρ̂µ̂ + ∂λ̂∂ν̂∂ρ̂gµ̂σ̂ + cyclic term)

= 0 (1.39)

テンソル方程式であるから任意の座標系でこの方程式は成り立つ。従って

▽λRρσµν + ▽ρRσλµν + ▽σRλρµν = 0 (1.40)

これを特にビアンキの恒等式という。

　ここで、リーマンテンソルの二つの添え字について縮約してみる。反対称部分
について縮約すれば結果は 0になるが、そうでない添え字について縮約をすれば
符号の違いを除いて結果は同じになる。このテンソルをリッチテンソルという：

Rµν = Rλ
µλν (1.41)

リッチテンソルはリーマンテンソルの対称性から

Rµν = Rνµ (1.42)

という対称性を持つ。さらにリッチテンソルのトレースをとるとリッチスカラー
（曲率）が得られる：

R = Rµ
µ = gµνRµν (1.43)

これらを用いた形式を得るため、ビアンキの恒等式に対して縮約の操作を二回行
うと

0 = gνσgµλ(▽λRρσµν + ▽ρRσλµν + ▽σRλρµν)

= ▽µRρµ − ▽ρR+ ▽νRρν (1.44)

あるいは、ダミー添え字を整理して

▽µRρµ =
1

2
▽ρR (1.45)
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metric compatibilityのおかげで共変微分の添え字を上げられる。そこでアイン
シュタインテンソルを定義できる：

Gµν = Rµν − 1

2
Rgµν (1.46)

4次元では、アインシュタインテンソルはリッチテンソルのトレースが負になっ
たものとして考えることができる (Gµ

µ = −R)。2重縮約したビアンキの恒等式は

▽µGµν = 0 (1.47)

と等しい。後でわかるように、リッチテンソルと計量の対称性のおかげで対称な
このテンソルは一般相対性理論で非常に重要な立ち位置にいる。

1.5 曲がった時空間の物理

　以上の議論を用いて一般相対性理論により表される重力の物理を調べる準備を
する。議題は二つである；重力場がどのように物質に影響を与えるのか、そして
物質がどのように重力場を決めるのかである。ニュートンの重力理論では、それ
ら二つの議題は重力ポテンシャル Φ中の物質の加速度に対する表式

a = −∇Φ (1.48)

そして物質の密度 ρとニュートンの重力定数G = 1を用いたポテンシャルにおけ
るポアソン方程式

∇2Φ = 4πGρ (1.49)

から成る。議論の見通しを良くするため、しばらく定数Gを顕に書いておく。一
般相対性理論で類推される主張は、どのように時空の曲率が重力として明示され
て物質に働くのか、またどのようにエネルギーと運動量が曲率を生成して時空に
影響を与えるのかである。等価原理を思い出そう。局所的な領域における重力の
検出不可能性と局所慣性座標系を見つけることの類似性に加え、重力が普遍的に
すべての物質に影響を与えることから重力が曲率と密接に結びついていると考え
られる。またこれに関連してミニマルカップリング原理は単純にミンコフスキー
計量 ηµν をもっと一般の計量 gµν に置き換えること、偏微分 ∂µを共変微分▽µに
置き換えることに相当することになる。これを簡単な例で説明しよう。自由落下
粒子の運動を考える。平坦な空間では、そのような粒子は直線上に動く。すると
パラメータ化された経路 xµ(λ)の方程式は

d2xµ

dλ2
= 0 (1.50)

である。一般座標ではこれはテンソル方程式ではない。一階微分はよく定義され
たベクトルの成分であるけれども、二階微分はそうではない。実際、極座標 (r, φ)
では円上で運動する自由粒子を除いてこの方程式は正しくない ( drdλ

dφ
dλ 等の混ざり

合う項が存在する）。チェーンルールを用いて

d2xµ

dλ2
=

d

dλ

dxµ

dλ
=
dxν

dλ
∂ν
dxµ

dλ
(1.51)

と書ける。これを曲がった空間に一般化する、すなわち偏微分を共変微分に置き
換えると

dxν

dλ
∂ν
dxµ

dλ
−→ dxν

dλ
▽ν

dxµ

dλ
=
d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
(1.52)
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従って、ニュートンの理論における方程式の適切な一般化は測地線の方程式

d2xµ

dλ2
+ Γµ

ρσ

dxρ

dλ

dxσ

dλ
= 0 (1.53)

であるとわかる。それゆえに、一般相対性理論では自由粒子は測地線に沿って動
く；1.3節との関連を見て取れる。

1.6 ニュートン極限

　前の節では平坦時空間から曲がった時空間へ方程式を一般化する方法を見つけ
た。そこでこの節では方程式が重力をどう記述しているのかを見るために、ニュー
トンの重力理論の描像と一致する場合を見る。それはニュートン極限と呼ばれ、
次の三つの要請から成る：

・光の速度に対して粒子はゆっくりと動く

・平坦時空の摂動として考えられるくらい重力場が弱い

・場は時間的に不変である（静止している）

パラメータとして固有時 τ をとり、測地線の方程式に対してこの極限を適用する。
一つ目の要請は

dxi

dτ
≪ dt

dτ
(1.54)

ということである。だから測地線の方程式は

d2xµ

dλ2
+ Γµ

00

(
dt

dτ

)2

= 0 (1.55)

となる。場は静止している (∂0gµν = 0)から、クリストッフェル記号 Γµ
00 で残る

ものは

Γµ
00 =

1

2
gµλ(∂0gλ0 + ∂0goλ − ∂λg00) = −1

2
gµλ∂λg00 (1.56)

となる。最後に重力場が弱いということは、計量をミンコフスキー形式と小さな
摂動の和に分解できるということである：

gµν = ηµν + hµν |hµν | ≪ 1 (1.57)

hは一次のオーダーまで採る。計量の定義から gµνgνσ = δµσ を用いて上付き添え
字を持つ計量の分解を見つけることができて

gµν = ηµν + χµν と仮定する。但し | χµν |≪ 1

gµνgνσ = gµν(ηνσ + hνσ)

= (ηµν + χµν)(ηνσ + hνσ)

= δµσ + ηνσ(h
µσ + χµσ) + 0 = δµσ

∴ χµν = −hµν



16 CHAPTER 1. 一般相対性理論

従って
gµν = ηµν − hµν (1.58)

ここで hµν = ηµρηνσhρσ である。接続は高いオーダーにのみ寄与するから、ミン
コフスキー計量を hの明らかなオーダーのものに対して添え字を上げ下げするた
めに使うことができる。hµν を、ミンコフスキー空間を伝搬し、他の場と作用す
る対称 (0,2)テンソル場として考えても良い。以上のすべてを適用してやると

Γµ
00 = −1

2
ηµλ∂λh00 (1.59)

測地線の方程式 (1.55)は、それゆえに

d2xµ

dτ2
=

1

2
ηµλ∂λh00

(
dt

dτ

)2

(1.60)

∂0h00 = 0を使うと、この µ = 0成分はちょうど

d2t

dτ2
= 0 (1.61)

となって dt
dτ が定数であるとわかる。(1.60)の空間成分を決めるため、ηµν の空間

成分が 3× 3恒等行列だったことを思い出すと、

d2xi

dτ2
=

1

2

(
dt

dτ

)2

∂ih00 (1.62)

を得る。これをニュートンの重力理論における方程式 (1.48)と比較すると

h00 = −2Φ (1.63)

あるいは言い換えると
g00 = −(1 + 2Φ) (1.64)

となる。それゆえに、時空間の曲率はニュートン極限で重力を記述するのに十分
であるとわかる。

1.7 アインシュタイン方程式

　次にニュートンポテンシャルに対するポアソン方程式

∇2Φ = 4πGρ (1.65)

に取って代わる方程式を見つけよう。左辺は重力ポテンシャルに二階微分が作用
したものとなっており、一方右辺は質量分布の測定量となっている。この方程式
を一般相対性理論に適応させる。質量密度の一般化テンソルは、エネルギー・運
動量テンソル Tµν と考えられる。その一方で重力ポテンシャルは (1.64)のおかげ
で計量テンソル gµν によって置き換えられると考えられる。すなわち、

[∇2g]µν ∝ Tµν (1.66)

という関係があると考えられる。まず考えられることとしてミニマルカップリング
原理から偏微分 (ラプラシアン)∇2 = δij∂i∂j を共変微分 (ダランベルシアン)□ =
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▽µ▽µ に置き換えることである。しかし [ ]内の計量は metric compatibilityに
より自動的に 0になってしまう。幸運なことに計量の二階微分（と一階微分）な
らそれは自明ではない。この項を含むテンソルで有力なものの一つはリーマンテ
ンソルRρ

σµν である。クリストッフェル記号は計量の一階微分を含んでいる。それ
ゆえにリーマンテンソルは計量の一階微分と二階微分の項をどちらも持っている。
ただしリーマンテンソルでは右辺と添え字の数が合わないから、縮約してリッチ
テンソルを用いる。よって、重力場の方程式は

Rµν = κTµν (1.67)

と考えられる。κは定数である。しかし、エネルギー・運動量保存則

▽µTµν = 0 (1.68)

より (1.67)は
▽µRµν = 0 (1.69)

となり、これは任意の幾何学で正しくない；ビアンキの恒等式

▽µRµν =
1

2
▽νR (1.70)

と R = κgµνTµν = κT より
▽µT = 0 (1.71)

となる。スカラーの共変微分は偏微分になるから、(1.71)は時空間に対して Tが
不変であることを示す。T = 0で真空、T ̸= 0で物質を表すから、この結果は受
け入れがたい。そこでもう一つの可能性としてリッチテンソルから構成されるア
インシュタインテンソル

Gµν = Rµν − 1

2
Rgµν (1.72)

を評価しよう。これは常に
▽µGµν = 0

が成り立つから、計量に対する場の方程式を

Gµν = κTµν (1.73)

と考えることができる。確かにこの方程式は、右辺は対称で保存される (0,2)テ
ンソルのエネルギー・運動量密度の共変な表式であるし、左辺は計量とその一階
微分と二階微分で構成される対称で保存される (0,2)テンソルとなっている。後
はこの方程式がニュートン極限で重力ポテンシャルに対するポアソン方程式を満
たすかを確かめればよい。これを見るため、(1.73)の両辺の縮約をとると

R = −κT (1.74)

これを用いると (1.73)は書き直すことができて

Rµν = κ

(
Tµν − 1

2
Tgµν

)
(1.75)

を得る。次に弱い場で、時間に独立で、ゆっくりと粒子が動く極限にあるニュー
トンの重力を期待できる完全流体源のエネルギー・運動量

Tµν = (ρ+ p)UµUν + pgµν (1.76)
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を考える。ここで Uµは 4元速度、ρは静止系のエネルギー密度、pは静止系の圧
力である。ニュートン極限では圧力は無視できる；大雑把な説明をすると、物体
の圧力は光速度に近い速度で伝搬する粒子の衝突によって生まれるため、それを
除くニュートン極限では無視できるということである。よって実際に考えるエネ
ルギー・運動量テンソルは

Tµν = ρUµUν (1.77)

今考えている流体は、地球や太陽のようなある質量を持つ物体であるから、流体
の静止系

Uµ = (U0, 0, 0, 0) (1.78)

での働きで極限を見ることができる。時間成分は規格化条件 gµνU
µUν = −1を

満たす。弱い場の極限では (1.57)と (1.58)より

g00 = −1 + h00

g00 = −1− h00 (1.79)

それから hµν の一次のオーダーでは

U0 = 1 +
1

2
h00 (1.80)

を得る。この表式は規格化条件を満たすように採れば得られる。ただしこの表式
を (1.77)に代入するときは気を付けねばならない；エネルギー密度 ρは十分小さ
いと考えている（ρが 0に採れるときは空間は平坦である)ので、今の近似の水
準では単に U0 = 1と採ることになり、同じように U0 = −1として考えられる。
従って

T00 = ρ (1.81)

であり、他の成分は (1.78)より全て消えている。つまりニュートン極限ではエネ
ルギー ρ = T00 が Tµν の他の成分よりも大きいということを意味しているから、
(1.75)の µ = 0, ν = 0成分に注目して考えよう。トレースをとると

T = g00T00 = −T00 = −ρ (1.82)

を得る。これを重力場の方程式 (1.75)の 00成分に挿入すると

R00 = κ

(
T00 −

1

2
Tg00

)
=

1

2
κρ (1.83)

が得られる。さらにこの方程式を計量について書き下そう。必要な計算は R00 =
Rλ

0λ0 であるが、R0
000 = 0であるから、Ri

0i0 のみを考えればよい。すると

Ri
0j0 = ∂jΓ

i
00 − ∂0Γ

i
j0 + Γi

jλΓ
λ
00 − Γi

0λΓ
λ
j0 (1.84)

であるが、第二項は場が静止しているから消え、第三項、第四項は (Γ)2の表式で
あるから摂動の 2次の項を持つことになりこれらも消える。以上より

R00 = Ri
0i0

= ∂i

[
1

2
giλ(∂0gλ0 + ∂0g0λ − ∂λg00)

]
= −1

2
δij∂i∂jh00

= −1

2
∇2h00 (1.85)
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となる。(1.83)と比較するとニュートン極限では

∇2h00 = −κρ (1.86)

となるとわかる。この極限で h00 = −2Φとなるから、ポアソン方程式 (1.65)を
得るには κ = 8πGと採ればいい。従ってニュートン極限に一致するアインシュタ
イン方程式は

Rµν − 1

2
Rgµν = 8πGTµν (1.87)

である。このトレースを取ると R = −8πGT とわかり、これを代入すると別の
表式

Rµν = 8πG

(
Tµν − 1

2
Tgµν

)
(1.88)

を得る。この利点は真空のアインシュタイン方程式を考えたとき、すなわちTµν = 0
としたとき右辺が消えて

Rµν = 0 (1.89)

と単純に書くことができるということである。



Chapter 2

線形重力波

　この章では重力波の理論として最も簡単な線形重力波を議論する。前にも述べ
たが重力波は光の速度で伝搬する空間の歪みであり、非常に小さい現象と考えら
れている。これを一般相対性理論で記述するにはどうしたらいいのだろうか。そ
こで今までやってきたことを振り返ってみよう。まず前の章では一般相対性理論
を簡略的に説明した。そして最後の節とその前の節で計量がミンコフスキー計量
と小さな摂動に分解して書かれると仮定し議論を進めてきた。ここに注目し、こ
の章でもその仮定を踏襲して、計量が線形的に分解され、ミンコフスキー計量と
小さな摂動の和になるとして議論を進める。すなわち、時空間はバックグラウン
ドとして平坦な空間が存在し、そこに摂動が加わっているという描像を想像する
ということである。この描像の重力波を線形重力波と言い、重力波の性質を見た
り、解析をしたりすることに大いに役立つ。

2.1 線形アインシュタイン方程式

　我々の仮定では、計量は
gµν = ηµν + hµν (2.1)

と書ける。(2.1)を真空のアインシュタイン方程式 Rµν = 0に代入し、hµν のま
で展開することで線形アインシュタイン方程式を得ることができる。つまり、こ
の展開の一次の項を δRµν ≡ Rµν(hµν)と置けば、

δRµν = 0 (2.2)

が真空の線形アインシュタイン方程式である。δRµν が hµν でどのように書き下
すことができるのかを見るために、リッチテンソル

Rµν = ∂λΓ
λΓµν − ∂νΓ

λ
µλ + Γλ

µνΓ
τ
λτ − Γλ

µτΓ
τ
νλ (2.3)

とクリストッフェル記号

Γσ
µν =

1

2
gσρ(∂µgνρ + ∂νgρµ − ∂ρgµν) (2.4)

を用いる。ηµν のすべての成分が定数であることから最低次または 0次で摂動 hµν
は無視でき、それゆえにクリストッフェル記号は 0、曲率も 0となる。クリストッ
フェル記号の一次の摂動は

δΓσ
µν =

1

2
ησρ(∂µhνρ + ∂νhρµ − ∂ρhµν) (2.5)

20
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同様に、リッチテンソルの一次の摂動は

δRµν = ∂λδΓ
λ
µν − ∂νδΓ

λ
µλ (2.6)

となる。(2.5)を (2.6)に代入することで、アインシュタイン方程式は

δRµν = ∂λ

[
1

2
ηλρ(∂µhνρ + ∂νhρµ − ∂ρhµν)

]
− ∂ν

[
1

2
ηλρ(∂µhλρ + ∂λhρµ − ∂ρhµλ)

]
=

1

2

[
−□hµν + ∂µ

(
∂λh

λ
ν − 1

2
∂νh

λ
λ

)
+ ∂ν

(
∂λh

λ
µ − 1

2
∂νh

λ
λ

)]
=

1

2
[−□hµν + ∂µVν + ∂νVµ] = 0 (2.7)

となる。ここで □は平坦空間におけるダランベルシアン □ = ηµν∂µ∂ν であり、
ベクトル Vµ は

Vµ ≡ ∂λh
λ
µ − 1

2
∂µh

λ
λ (2.8)

とおいた。また線形の範囲で摂動の添え字はミンコフスキー計量で上げ下げする
ことができる：

hλµ = ηλνhνµ (2.9)

2.1.1 ゲージ変換

　今のところ hµν は未知の摂動であると仮定している。しかし、この仮定では座
標を一意的に決めることはできない。そこでその自由度を使って、ηµν を変えず
hµν の形を変えるが、(2.1)の形を変えない変換を施そう。これを見るために

x′µ = xµ + ξµ(x) (2.10)

なる座標の変換を考える。ここで、ξµ(x)は 4つの任意の関数であり、その微分
は摂動計量 hµν と同じくらい小さい。計量は座標変換の下で一般的に

g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x) (2.11)

で変換する。(2.10)から xµ = x′µ − ξµ(xν) = x′µ − ξµ(x′ν)であり、この最後の
等式は ξµの一次まで正しい。実際、一次では x′µに xµを代入することができる。
例えば

∂xµ

∂x′ν
= δµν − ∂ξµ

∂xν
(2.12)

とできる。(2.11)から新しい計量を

g′µν(x
′) = η′µν + h′µν(x

′) = ηµν + h′µν(x
′) (2.13)

と置くと、結果は

g′µν(x
′) = ηµν + h′µν(x

′)

=
∂xρ

∂x′µ
∂xσ

∂x′ν
(ηρσ + hρσ)

=

(
δρµ − ∂ξρ

∂xµ

)(
δσν − ∂ξσ

∂xν

)
(ηρσ + hρσ)

= ηµν + hµν − ∂νξµ − ∂µξν (2.14)
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となって、新しい摂動計量は

h′µν(x
′) = hµν − ∂νξµ − ∂µξν (2.15)

で与えられる。この変換を摂動計量に対するゲージ変換という。ξµ(x)は 4つの
任意の関数なので、その任意性を使って変換後の hµν(x)の形を簡単にすること
ができる。特に 4つの条件

V ′
µ = 0 (2.16)

が満たされ、(2.7)が δR′
µν = − 1

2□h′µν = 0となるように ξµ(x)の任意性を決め
る (ゲージ固定)。摂動 hµν について解いていないので (2.16)が満たされていると
仮定して良い。従ってプライムを外してアインシュタイン方程式 δRµν = 0が波
動方程式

□hµν(x) = 0 (2.17)

になり、ゲージ条件

Vµ ≡ ∂λh
λ
µ − 1

2
∂µh

λ
λ = 0 (2.18)

を伴う。電磁気学でMaxwell 方程式に対して波動方程式を得るために課した条件
（ローレンツ条件）に対応させて、この条件をローレンツ条件と呼ぶ。

2.2 重力波の生成

　前の節では計量摂動に対する波動方程式が得られた。すなわち、摂動は波とし
て伝搬するとわかった。これは欲しい重力波の描像そのものであり、仮定がより
強固なものとなったとわかる。この節でその具体例をいくつか紹介し、重力波の
性質を見ていくことにする。そこでまずトレース反転摂動

h̄µν = hµν − 1

2
hηµν (2.19)

を定義する。確かに h̄ = ηµνhµν = −hとなっている。これを考えた方がいくら
か都合が良い。ゲージ変換

hµν −→ hµν − ∂νξ
µ − ∂µξ

ν (2.20)

の下で、トレース反転摂動の変換は

h̄µν −→ (hµν − ∂νξ
µ − ∂µξ

ν)− 1

2
h′ηµν

ここで、

h′ = ηµνh′µν = ηµν(hµν − ∂µξν − ∂νξµ) = h− 2∂µξ
µ

であるから、

h̄µν −→
(
hµν − 1

2
hηµν

)
− ∂νξ

µ − ∂µξ
ν + ∂λξ

ληµν

= h̄µν − 2∂(µξν) + ∂λξ
ληµν (2.21)

と変換する。ゲージパラメータ ξµ が

□ξµ = ∂λh̄
λ
µ (2.22)
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を満たすように選ぶ。すなわちゲージ変換した先が

∂µh̄′
µ
ν = ∂µh̄

µ
ν −□ξν = 0

となることを示す。従ってプライムを外して、得られる方程式は

∂µh̄
µ
ν = 0 (2.23)

である。これは直交条件であり波が横波であることを示す。しかしトレース反転
でない元の摂動はこのゲージで横波ではなく

∂µh
µ
ν = ∂µh̄

µ
ν +

1

2
∂µhη

µν =
1

2
∂νh (2.24)

となる。このトレース反転摂動の定義をアインシュタインテンソル

Gµν =
1

2
(∂σ∂νh

σ
µ + ∂σ∂µh

σ
ν − ∂µ∂νh−□hµν − ηµν∂ρ∂σh

ρσ + ηµν□h)

に代入し、ローレンツ条件を用いると

Gµν = −1

2
□
(
hµν − 1

2
hηµν

)
= −1

2
□h̄µν (2.25)

を得る。(1.73)より、このゲージにおける線形アインシュタイン方程式は

□h̄µν = −16πGTµν (2.26)

となる。このような方程式の解はグリーン関数を使って得ることができる；ダラ
ンベルシアン □におけるグリーン関数 G(xσ − yσ)は、デルタ関数が波源の波動
方程式の解になる：

□xG(x
σ − yσ) = δ4(xσ − yσ) (2.27)

ここで □x は座標 xσ に関するダランベルシアンを示している。そうすると、一
般解として (x0 > y0)

h̄µν(x
σ) = −16πG

∫
G(xσ − yσ)Tµν(y

σ)d4y (2.28)

が得られる。これを遅延解と呼ぶ。また遅延グリーン関数の一般解は、

G(xσ − yσ) = − 1

4π|x− y|
δ
[
|x− y| − (x0 − y0)

]
θ(x0 − y0) (2.29)

で与えられている。ここで x = (x1, x2, x3),y = (y1, y2, y3)であり

|x− y| =
[
δij(x

i − yi)(xj − yj)
] 1

2

θ(x0 − y0) =

{
1 x0 > y0

0 その他

である。これを (2.28)に代入すると

h̄µν = 4G

∫
1

|x− y|
δ
[
|x− y| − (x0 − y0)

]
θ(x0 − y0)Tµν(y

σ)d4y

= 4G

∫
1

|x− y|
Tµν(t− |x− y|,y)d3y (2.30)
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ここで、t = x0。遅延時間は

tr = t− |x− y| (2.31)

で定義される。これらの関係を Figure2.1に示した。

Figure 2.1: 過去の点 (時刻 tr,座標 yi)と時刻 t平面上の座標 xiと座標 yiの関係

そこで、簡単に遠く離れた孤立した波源により生じる重力放射の場合を考え
る。フーリエ変換とその逆変換

h̄µν(t,x) =
1√
2π

∫
dω e−iωt˜̄hµν(t,x) (2.32)

˜̄hµν(ω,x) =
1√
2π

∫
dt eiωth̄µν(t,x) (2.33)

を用いて一般解を導出する。フーリエ逆変換に (2.30)の結果を代入すると

˜̄hµν(ω,x) =
4G√
2π

∫
dtd3y eiωtTµν(t− |x− y|,y)

|x− y|

=
4G√
2π

∫
dtrd

3y eiωtreiω|x−y|Tµν(tr,y)

|x− y|

= 4G

∫
d3y eiω|x−y| T̃µν(ω,y)

|x− y|
(2.34)

ここで、エネルギー・運動量テンソルのフーリエ逆変換

T̃µν(ω,y) =
1√
2π

∫
dtr e

iωtrTµν(tr,y) (2.35)

を用いた。波源が孤立して遠く離れたところにあり、そしてゆっくり動いている
という近似を行う (Figure2.2)。
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Figure 2.2: 観測者と波源

ゆっくり動いていることから、殆どの放射の振動数は小さい（長波長）：δr ≪ ω−1

この近似の下で
eiω|x−y|

|x− y|
項は

eiωr

r

と置き換えて積分の外に出すことができる。よって

˜̄hµν(ω,x) = 4G
eiωr

r

∫
d3y T̃µν(ω,y) (2.36)

を得る。摂動の表式が得られたが、我々が課したローレンツ条件により、この成
分全てを計算する必要はないとわかる；フーリエ空間におけるローレンツ条件
∂µh̄

µν(t,x) = 0は

∂µ
˜̄hµν = iω˜̄h0ν

∴ ˜̄h0ν = − i

ω
∂i
˜̄hiν (2.37)(

∵ ∂0
˜̄h0ν(ω,x) = 0

)
に置き換わるから、˜̄hµν(ω,x) の空間成分のみを考えればよい。ν = j とおく。
(2.36)を部分積分すると∫

d3y T̃ ij(ω,y) =

∫
d3y ∂k(y

iT̃ kj)−
∫
d3y yi(∂kT̃

kj) (2.38)

最初の項は波源が孤立していることから表面積分により落ちる。一方で、第二項
は ∂µT

µν = 0のフーリエ変換により T̃ 0j と関係して

∂kT̃
kµ = iωT̃ 0µ (2.39)
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となるから、 ∫
d3y T̃ ij(ω,y) = −iω

∫
d3y yiT̃ 0j

=
iω

2

∫
d3y yiyj∂lT̃

0l

= −ω
2

2

∫
d3y yiyj T̃ 00 (2.40)

を得る。ここで最初の行でエネルギー・運動量テンソルの対称性を用いて i, j の
対称な項で分解した後、部分積分をして表面項を落とした。ここで、波源のエネ
ルギー密度の四重極モーメントを定義する：

Iij(t) =

∫
d3y yiyjT 00(t,y) (2.41)

四重極モーメントのフーリエ変換について、解の形式は

˜̄hij(ω,x) = −2Gω2 e
iωt

r
Ĩij(ω) (2.42)

Ĩij(ω) =

∫
d3y yiyj T̃ 00(ω,y) (2.43)

となる。これを tに戻すことでトレース反転摂動に対する四重極モーメントを用
いた表式が得られる：

h̄ij(t,x) = − 2G√
2πr

∫
dω ω2e−iωt+iωr Ĩij(ω) =

2G

r

d2Iij
dt2

(tr) (2.44)

これが、重力波の振幅である。ここで tr = t− rであり、フーリエ変換

1√
2π

∫
dω e−iω(t−r)Ĩij(ω) = Iij(t− r) = Iij(tr) (2.45)

を用いた。従って、孤立した非相対論的な物体により生成される重力波は、波源
を横切る観測者の過去の光円錐でのある点で、エネルギー密度の四重極モーメン
トの時間の二階微分に比例するとわかる。

2.2.1 質量の等しい二つの星の連星からの重力波（円軌道）

　さて、得られた重力波の振幅の表式を具体例を用いて解析しよう。この論文の
単位系で (2.44)は

h̄ij(t,x) =
2

r

d2Iij
dt2

(tr) (2.46)

である。まず、質量が等しくM の二つの星が x1 −x2平面でそれらの重心から距
離 R離れたところで速度 vで円軌道にある場合を考える。(Figure2.3)
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Figure 2.3: 連星の軌道

ニュートン近似ができるように、軌道はケプラーのものであるとして議論す
る。円軌道は重力と遠心力のつり合いにより特徴づけられる：

M2

(2R)2
=
Mv2

R
(2.47)

これより

v =

(
M

4R

) 1
2

(2.48)

ひとつの星の軌道の周期 (hour)は

P =
2πR

v
(2.49)

ゆえに、軌道の角振動数は

Ω =
2π

P
=
v

R
=

(
M

4R3

) 1
2

(2.50)

となる。星を a, bでラベル付けしよう。すると Ωについて、星 aの明確な経路で
書き下せる。

x1a = R cosΩt , x2a = R sinΩt (2.51)

またエネルギー密度は

T 00(t,x) =Mδ(x3)
[
δ(x1 −R cosΩt)δ(x2 −R sinΩt) + δ(x1 +R cosΩt)δ(x2 +R sinΩt)

]
(2.52)
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となる。これより (2.41)から、四重極モーメントが得られ、各成分を書き表すと

I11 =

∫
d3y y1y1T 00(t,y) = 2MR2 cos2 Ωt =MR2(1 + cos 2Ωt) (2.53)

I22 = MR2(1− cos 2Ωt) (2.54)

I12 = I21 = MR2 sin 2Ωt (2.55)

Ii3 = 0 (2.56)

従って、(2.46)より計量摂動の成分が得られる：

h̄ij(t,x) =
8M

r
Ω2R2

 − cos 2Ωtr − sin 2Ωtr 0
− sin 2Ωtr cos 2Ωtr 0

0 0 0

 (2.57)

これがこの場合での重力波の振幅である。この係数を簡単に評価してみる。少し
書き換えると

MΩ2R2

r
=

M

r

(
MP 2

16π2

) 2
3 ( π

P

)2
∼ 10−21

(
M

M⊙

) 5
3
(
1h

P

) 2
3
(
100pc

r

)
(2.58)

となる。ここで hは 1時間当たりの時刻 (hour)を表し、M⊙は太陽質量を表す。
[pc]は長さの単位で、おおよそ 3.0× 1016mである。さらに具体例として地球で
最も明るい連星重力波源のひとつである ıBooについて考えてみる。連星 ıBooは
1M⊙の星と 0.5M⊙の星から成り、軌道周期 P = 6.5hourで周り合っている。そ
れゆえに、観測される歪みは h̄ij ∼ 10−21 とわかる。これは非常に小さな値であ
ると言え、重力波を検出するのがいかに困難かを象徴している。

2.2.2 質量が異なる二つの星の連星からの重力波（円軌道）

　前の節では、質量が等しい場合を考えた。少し一般化して質量が異なる二つの
星の連星を考える。質量中心系 O を採り、質量 m1 の星（星 a)と質量 m2 の星
(星 b)の間隔を 2Rとする。(Figure2.4)
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Figure 2.4: 連星の軌道　質量が異なる場合

すると原点Oと星 aまでの距離は m2

m1+m2
2Rであり、原点Oと星 bまでの距

離は m1

m1+m2
2Rである。これよりエネルギー密度は

T 00(t,x) = δ(x3)
[
m2δ(x

1 − m1

m1+m2
2R cosΩt)δ(x2 − m1

m1+m2
2R sinΩt)

+ m1δ(x
1 + m2

m1+m2
2R cosΩt)δ(x2 + m2

m1+m2
2R sinΩt)

]
(2.59)

と書き変わるとわかる。次に四重極モーメントの計算に移るが、例えば 11成分
を計算すると

I11 =

[
m1

(
m2

m1 +m2

)2

+m2

(
m1

m1 +m2

)2
]
4R2 cos2 Ωt

= 2µR2(1 + cos 2Ωt) (2.60)

となって、同様に計算すると他の成分も前の節で得られた結果をM −→ 2µとし
たものに等しいとわかる。ここで換算質量 µ = m1m2

m1+m2
を用いた。従って、最終

的に得られる重力波振幅は

h̄ij(t,x) =
16µ

r
Ω2R2

 − cos 2Ωtr − sin 2Ωtr 0
− sin 2Ωtr cos 2Ωtr 0

0 0 0

 (2.61)

である。

2.2.3 質量が異なる二つの星の連星からの重力波 (楕円軌道)

　最後により一般的な連星の軌道である楕円軌道の場合における重力波の表式を
求める。同じように質量中心系を採り Figure2.5のように座標系を描く。先程と
異なるのは角度の時間依存性と星間距離の時間依存性である。
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Figure 2.5: 連星の軌道　楕円軌道で連星が運動する場合

半長軸を a、離心率を eとし、これらを全エネルギー E(E < 0)と角運動量 L
に関して表すと

a = −m1m2

2E
(2.62)

e2 = 1 +
2EL2(m1 +m2)

m3
1m

3
2

(2.63)

二つの星の間の距離は

r =
a(1− e2)

1 + e cos θ
(2.64)

であり、各星の座標は

r1 =
m2

m1 +m2
r

r2 =
m1

m1 +m2
r (2.65)

と表される。議論の混乱を防ぐため、以下 (x1, x2, x3) = (x, y, z)と置く。四重極
モーメントは前の節と同じように計算すれば求まり、

Ixx =
m1m2

m1 +m2
r2 cos θ

Iyy =
m1m2

m1 +m2
r2 sin θ (2.66)

Ixy = Iyx =
m1m2

m1 +m2
r2 sin θ cos θ

となる。角運動量は L = m1m2

m1+m2
r2θ̇(ここで θ̇ = dθ

dt ,以下” ˙ ”は時間微分を表す)

だから、半長軸と離心率を用いて

θ̇ =
1

r2
[(m1 +m2)a(1− e2)]

1
2 (2.67)
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となり、これと (A.3)から

ṙ = e sin θ

(
m1 +m2

a(1− e2)

) 1
2

(2.68)

が従う。今までと同様に四重極モーメントを微分し、重力波の振幅を求める。結
果は次のようになる：

İxx = − 2m1m2

[(m1 +m2)a(1− e2)]
1
2

r sin θ cos θ (2.69)

Ïxx = − 2m1m2

a(1− e2)
(cos 2θ + e cos3 θ) (2.70)

İyy =
2m1m2

[(m1 +m2)a(1− e2)]
1
2

r(sin θ cos θ + e sin θ) (2.71)

Ïyy =
2m1m2

a(1− e2)
(cos 2θ + e cos θ + e cos3 θ + e2) (2.72)

İxy =
m1m2

[(m1 +m2)a(1− e2)]
1
2

r(cos2 θ − sin2 θ + e cos θ) (2.73)

Ïxy = − 2m1m2

a(1− e2)
(sin 2θ + e sin θ + e sin θ cos2 θ) (2.74)

以上より、重力波振幅は、波源から観測者までの距離を r′ とおくと

h̄ij(t,x) =
2

r′
Ïij(tr)

=
4m1m2

a(1− e2)r′

 − cos 2θ − e cos3 θ − sin 2θ − e sin θ − e sin θ cos2 θ 0
− sin 2θ − e sin θ − e sin θ cos2 θ cos 2θ + e cos θ + e cos3 θ + e2 0

0 0 0


(2.75)

と求まる。ただし θ = θ(tr)に注意する。また離心率が e = 0のときこの軌道は円
軌道になるが、この結果に e = 0を代入すると確かに円軌道の結果 (2.61)に一致
するとわかる。(a = r = 2R, θ = Ωtに注意し、1 = 8R3Ω2

m1+m2
を挿入すればよい。)

　以上 3つの例について重力波振幅の表式を書き下したが、これらのモデルでは
重力放射を永遠に続けるエネルギーを持った連星となってしまう。このような近
似で十分な連星もあるが、実際には連星は放射によりエネルギーが減少し、それ
らは螺旋軌道を描く。

2.3 四重極公式

　重力波は放射系からエネルギーを運び去る。この性質を見るために、今まで扱っ
てきた弱場長波長近似で重力波として失う全エネルギー損失率の式を得よう。こ
の式のことを四重極公式という。まず表式 h̄ij(t,x) = 2

r Ïij(tr) は波源のエネル
ギー密度の四重極モーメントテンソル Iij の二階微分として波源から遥か遠く離
れた重力波の振幅を与えている。エネルギーフラックスが波の振幅の 2次である
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から、重力波の光度 L(全放射エネルギー発生率)は Iij とその時間微分の 2次の
形をしているはずである。次元解析により

L =
(エネルギー)

(時間)

であるから、この論文の単位系では Lは無次元量である。Iij はその定義により、
(距離)2×(エネルギー)の次元を持つので、この単位系で無次元量になるには時間
について三階微分したものでなくてはならないとわかる。さらに Lは空間回転の
下でスカラーのように振舞うから、

...
I ij の 2次のスカラー結合でなくてはならな

い。可能性は ...
I ij

...
I
ij あるいは (

...
I
k
k)

2

である。球対称な系では放射が出ないことより前者の場合が当てはまる。ここで

Qij = Iij − 1

3
δijIkk (2.76)

を定義する。これを既約四重極モーメントという。係数 1
5 を掛けて、四重極公式は

L =
1

5

⟨...
Qij

...
Q

ij
⟩

(2.77)

となる。ここで ⟨ ⟩は一周期にわたって時間平均をとることを表す。これは重力
波のエネルギー放射のエネルギーを一波長内に局在化できないことに起因する。
エネルギー放射との関係は

L = −
⟨
dE

dt

⟩
(2.78)

である。因みに c ̸= 1, G ̸= 1の単位系で四重極公式は

L =
1

5

G

c5

⟨...
Qij

...
Q

ij
⟩

(2.79)

によって与えられる。この四重極公式を、連星系によって重力波で放出されるエ
ネルギー発生率を求めることに適応する。まずは質量の等しい二つの連星の場合
を考える。Iij は (2.41)によって与えられているから、時間平均で係数 1

2 が出て
くることに注意すると

L =
1

2
× 1

5
M2R4(64Ω× 4) =

128

5
M2R4Ω6 (2.80)

また R =
(

MP 2

16π2

) 1
3

を用いると、

L = 1.85× 103
(
M

P

) 10
3

(2.81)

となる。さらに Gや cを入れて書けば (M −→ GM
c4 , t −→ ct, P −→ cP )

L =
128

5
4

1
3
c5

G

(
πGM

c3P

) 10
3

(2.82)

となって、単位 erg = 10−7Jを使って書くと

L = 1.9× 1033
(
M

M⊙

1h

P

) 10
3 erg

s
(2.83)
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と書き表すことができる。ここで今までと同様にhは 1時間当たりの時刻 (hour)を
表し、M⊙は太陽質量を表す。ところで、電磁波における太陽光度は 3.9×1033erg/s
である。従って、典型的な星の質量を持つ短い周期の連星は重力波において暗い
というわけではなく、重力が物質と弱く結合していることが重力波の発見を困難
にしているのである。
　他の二つの例についても全エネルギー損失率を求めてみよう。まず質量が異な
る二つの星の連星が円軌道上にある場合においては、M −→ 2µに置き換えれば
よいので、

L = 1.9× 1033
(

2µ

M⊙

1h

P

) 10
3 erg

s
(2.84)

ただし、µ = m1m2

m1+m2
である。楕円軌道上にある場合は少し計算が必要である。ま

ず必要なものとして
I = Ixx + Iyy =

m1m2

m1 +m2
r2 (2.85)

であり、これと他の成分の三階微分を計算すると

...
I xx =

2m1m2

a(1− e2)
θ̇(2 sin 2θ + 3e sin θ) (2.86)

...
I yy = − 2m1m2

a(1− e2)
θ̇(2 sin 2θ + e sin θ + 3e cos2 θ sin θ) (2.87)

...
I xy = − 2m1m2

a(1− e2)
θ̇(2 cos θ − e cos θ + 3e cos3 θ) (2.88)

...
I =

...
I xx +

...
I yy = − 2m1m2

a(1− e2)
θ̇e sin θ (2.89)

と求まる。これらより、エネルギー放射は

dE

dt
= −1

5

(
...
I ij

...
I ij −

1

3

...
I
2

)

= − 8

15

m2
1m

2
2

a2(1− e2)2
θ̇2[12(1 + e cos θ)2 + e2 sin2 θ] (2.90)

であり、回転周期についての平均をとると、
∫ T

0
dT −→

∫ 2π

0
dθ で置き換えること

ができるから、重力波の光度は

L = −
⟨
dE

dt

⟩
=

32

5

m2
1m

2
2(m1 +m2)

a5(1− e2)
7
2

(
1 +

73

24
e2 +

37

96
e4
)

(2.91)

と求まる。ただし、e4 項までとることにし、2πで割っていることに注意する。

2.4 トランスバース・トレースレスゲージ (TTゲージ)

　重力波の性質を見る際に便利なゲージ変換がいくつかある。その中で代表的な
トランスバース・トレースレスゲージを紹介する。まず、線形アインシュタイン
方程式

□h̄µν = 0 (2.92)



34 CHAPTER 2. 線形重力波

の最も単純な解は
h̄µν = Re[Aµν exp(ikαx

α)] (2.93)

の形の平面波解である。ここでAは振幅テンソルであり、kはヌル 4元ベクトル
(kαk

α = 0)である。このような平面波は、振動数 ω = k0 =
(
kjk

j
) 1

2 で空間の方
向 k⃗ = (kx, ky, kz)/k

0 に向かって伝わる。Aは対称性により 10個の独立な成分
を持つ。そして一般相対性理論での力学的な自由度は二つのみである。この根拠
は二つある。

根拠 1
Aと kは平面波を記述するなら任意に取ることはできない。その結果として得

られる二つの量の間の直交条件はAの 10個の成分のうち 4つを束縛する。

根拠 2
　大局的なローレンツゲージ (∂αh̄

µα = 0)を選んでも、線形化された理論の座
標系を完全に固定できない。実際、任意のゲージ変換に対して説明がつかない曖
昧さが残っている。すなわち、大局的なゲージを選んでも無限小の座標変換が束
縛されない。

根拠 2の良い評価は、小さく任意の変位 4元ベクトル ξα に関する無限小変換

x′α = xα + ξα (2.94)

を考えることであった。2.1.1節のゲージ変換と 2.2節の重力波の生成の最初の議
論を見よ。この場合のゲージ条件は結局

□ξα = ∂λh̄
λα = 0 (2.95)

を満たすということであった。すなわち、変位ベクトルは波源がない波動方程式
の解となっている。結果として平面波ベクトルは成分

ξα ≡ −iCα exp(ikβx
α) (2.96)

を持つものを生成する。ここで、Cα は 4つの任意の定数である。ゲージ変換は
さらにAの任意の 4つの成分を変える。それゆえに、Aµν は 10− 4− 4 = 2個の
みの線形的に独立な成分を持つ。これは一般相対性理論の自由度の数に一致する。
そこで、次の条件として振幅テンソルの成分を束縛するとしばしば便利である。

(a)直交条件：Aと kが直交するように選んだなら、振幅テンソルの 4つの成分
は条件として指定される。

Aµνk
ν = 0 (2.97)

(b)大局ローレンツ系：特殊相対論のように、大局ローレンツ系を 4元速度 uの
観測者に関係して定義することができる。この場合では、振幅テンソルの 3つの
成分は、4元速度 uがAと直交するように選んだ後で条件として指定できる。

Aµνu
ν = 0 (2.98)

(c)無限小ローレンツ変換：振幅テンソルの最後の独立な成分は無限小変位ベク
トル ξµ = iCµ exp(ikβx

β)を選んだ後で評価できる。

Aµ
µ = 0 (2.99)
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これらの新しい束縛条件 (a)-(c)を静止系、すなわち uα = (1, 0, 0, 0)の場合で考
えよう。この系では、波数ベクトル kµ の成分が直接現れてこないように振幅テ
ンソルに対する条件として書くことができる。

(a) Aµνk
ν = 0 ⇔ ∂jhij = 0 (2.100)

すなわち、hµν の空間成分は発散なしである。

(b) Aµνu
ν = 0 ⇔ hµ0 = 0 (2.101)

すなわち、hµν の空間成分のみが 0でない。

(c) Aµ
µ = 0 ⇔ h = hjj = 0 (2.102)

すなわち、hµν の空間成分はトレースが 0である。

条件 (a),(b),(c)を満たすゲージをトランスバース・トレースレス (TT)ゲージと
呼ぶ。これらは重力波の解析に対する標準的なゲージである。一度大局ローレン
ツ系が uα = δα0 を選んだなら、(2.101),(2.102)を満たすゲージを見つけることは
常に可能であるとわかる。

2.5 TTゲージの意味

　このゲージでの 0でないリーマンテンソルは

Rj0k0 = R0j0k = −Rj00k = −R0jk0 (2.103)

であるから、この成分を計算すると

Rj0k0 = −1

2
∂20h

TT
jk (2.104)

と求まる。ここで hTT は TTゲージ下における重力波振幅を表す。TTゲージを
使うことにより、時間周期の振る舞いが hTT

jk ∝ exp(iωt)で伝わっている重力波
を時空の局所的な振動に結びつけることができる。すなわち、

∂20h
TT
jk ∼ −ω2 exp(iωt) ∼ Rj0k0 , Rj0k0 =

1

2
ω2hTT

jk (2.105)

重力波の伝搬の効果をよりよく評価するため、測地線に沿った運動上の隣接する
粒子 Aと Bの間隔を考え、入射重力波の存在でこの間隔がどのように変化する
かを考える (Figure2.6)。粒子 Aの世界戦の線素が次の形になるように粒子 A近
傍の座標系 xα を導入する (つまり粒子 Aと基準系がともに動くとする)：

ds2 = −dτ2 + δijdx
idxj +O

(
|xj |2

)
dxαdxβ (2.106)

重力波の到達は二つの粒子の測地線運動に摂動を与え、測地線の方程式に出ない
寄与を生む。接四元ベクトル uα = dxα

dτ を持つ二つの測地線の軌道の間の間隔四
元ベクトル V α における変化は、測地線の方程式で表される：

uγuβ▽β▽γV
α = −Rα

βγδu
βV γuδ (2.107)
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これは経路 xβ と xγ に沿ってベクトル V αを平行移動した結果として生じる。た
だし、二次以上の項は無視している。あるいは

uγuβ
(
D2V α

Dτ2

)
≡ uγuβ

(
d2V α

dτ2
+ Γα

βγ

dV β

dτ

dV γ

dτ

)
= −Rα

βγδu
βV γuδ (2.108)

二つの粒子の位置における間隔三元ベクトルの成分を njB ≡ xjB − xjA = xjB とす
ると、(2.108)は

D2xjB
Dτ2

= −Rj
0k0x

k
B (2.109)

と書ける。ここで粒子 Aのまわりではその定義より接続係数は 0(Γj
αβ = 0)、す

なわち (2.109)は普通の全微分で書くことができる。この TTゲージでは、座標
系 xαと粒子 Aはともに動くので固有時と座標時が計量摂動の一次のオーダーで
一致することから、

d2xjB
dt2

=
1

2

(
∂2hTT

jk

∂t2

)
xkB (2.110)

となり、そして解は

xjB(t) = xkB(0)

[
δjk +

1

2
hTT
jk (t)

]
(2.111)

である。(2.111)は、基準系と粒子Aがともに動いていて、粒子 Bが hTT
jk に比例

する振幅で振動していることを示している。横波であるから進行方向と振動方向
は異なり、h⃗ ∥ k⃗のとき hTT

jk x
j
B(0) ∝ hTT

jk k
j
B(0) = 0に注意しなくてはならない。

Figure 2.6: 方向 k⃗に向かって伝搬する重力波の相互作用により粒子 Aと Bの間
隔に変化が生じる。

具体的に、z方向正の向きの二次元重力波の伝搬を考える。この場合では、

hTT
xx = −hTT

yy = Re[A+ exp{−iω(t− z)}] (2.112)

hTT
xy = hTT

yx = Re[A× exp{−iω(t− z)}] (2.113)
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と表される。ここで A+と A×は偏極の二つの独立なモードを示す。そうすると
古典電磁気学のように重力波を二つの線形偏極平面波と二つの円偏極平面波に分
解できる。前者の場合で、z方向に重力波が伝搬しているとき、偏極テンソル +
と ×は

e+ ≡ e⃗x ⊗ e⃗x − e⃗y ⊗ e⃗y (2.114)

e× ≡ e⃗x ⊗ e⃗x + e⃗y ⊗ e⃗y (2.115)

で定義される。上を+(プラス)偏極モード、下を ×(クロス)偏極モードと呼ぶこ
ともある (Figure2.7)。これら二つの線形偏極モードは π

4 で次に移る。

Figure 2.7: +偏極と ×偏極。黒点は自由落下粒子であり、重力波の到達による
変化を示している。黒点が付いていない円は重力波が到達していなかった場合に
あったであろう位置を表している。

同様に、円偏極の二つの状態を記述する二つのテンソルを定義できる。
時計回りの円偏極 eR

eR ≡ e+ + ie×√
2

(2.116)

反時計回りの円偏極 eL

eL ≡ e+ − ie×√
2

(2.117)

で示される (Figure2.8)。上をR(時計回り)偏極、下を L(反時計回り)偏極と呼ぶ
こともある。
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Figure 2.8: R偏極と L偏極

このように、TTゲージを採ることによって重力波を偏極の基底で分解するこ
とができた。それゆえに、一般の重力波はこれらのモードの重ね合わせによって
表されているとわかり、そしてこの事実は重力波の解析に役立つ。



Chapter 3

重力波の解析

　前の章で重力波の最も単純な理論を展開した。しかし、実際の観測ではこの近
似だけでは当然うまくいかない。我々は連星を組んだ星は螺旋軌道を描いて次第
に近づいていき、最後には衝突して一つの星（ブラックホール）になると考えて
いる。これらの過程を全てアインシュタイン方程式によって解くことができるが、
アインシュタイン方程式が非常に入り組んで単純に解くことはできない。そこで
用いられるのが数値相対論で、アインシュタイン方程式を数値的に解く方法であ
る。しかしながら、すべての段階を一度で記述することに関する難しさは残った
ままなので、一連の流れを三つに分けて考えることにする (Figure3.1)。一つ目は
連星軌道 (inspiral)フェイズと呼ばれ、螺旋運動をしている場合の重力波振幅で
ある。二つ目は合体 (merging)フェイズと呼ばれ、二つの星が合体している場合
の重力波振幅である。そして三つ目はリングダウン (ring down)フェイズと呼ば
れ、合体して生成された星の揺らぎによる準固有振動 (減衰する固有振動)が発生
し、それによる重力波振幅が観測される。

Figure 3.1: 重力波振幅観測の例

39
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この章ではこれらをどのように評価していくのかを紹介することが目的であ
る。まず手短に実験原理を説明しよう。測定方法として確立しているのはレーザー
干渉計による実験である。マイケルソンモーレーの干渉計を思い浮かべるとわか
りやすい。L字型の光が通る経路を持ち、重力波の到来によりその光路がわずか
に変化する。そうすると干渉縞に変化が生じ、その結果として重力波を測定する
ことができる。次に解析の議論に入る前に簡単に理論波形の必要性を説明する。
そもそも観測データは重力波の信号とノイズが重ね合わさったものになる。重力
波信号は非常に小さいことがわかっていて、それゆえにどのようにしてノイズを
取り除くのかが重要になってくる。そこで扱われる手法としてMatched filtering
というものがある。これは観測された重力波形を予め計算して置いたいくつもの
理論波形と比較し、最も合うものを選ぶという手法である。もう少し詳しく言う
と、観測データと理論波形の相関を取り、それが大きいか小さいかでノイズと重
力波波形を判断していくということである。相関が大きければそれは重力波の波
形そのものであり、小さければノイズであると言ったふうである。それゆえに、
理論波形をより正確に計算できていなければ効率よく判別することはできない、
あるいはこの手法は成り立たないと言える。従って、この手法が主である限り、
理論波形を計算することは非常に重要である。

3.1 連星軌道 (Inspiral)フェイズ

　このフェイズでは Post-Newton近似 (以下、PN近似)と呼ばれる近似を用いて
アインシュタイン方程式を解くことによって重力波振幅を得ることができる。こ
れは (vc )

2 で展開する近似であり、特にオーダー (vc )
5 で重力波の減衰効果が顕著

に現れてくることから PN2.5近似といってその項を評価する。当然評価する項の
オーダーが大きくなればなるほど、アインシュタイン方程式は解析的に解くこと
は難しくなり、数値的な手法を取らざるを得なくなる。そこで、ここでは簡単に
PN近似の最も低い次数の場合を評価し重力波振幅の表式を得ることを目的とす
る。もっと精度を良くした近似法として Post-Minkowskian Approximationがあ
るが、この評価の仕方は文献*を参考にしてほしい。

3.1.1 PN近似の下での場の方程式

　この近似で小さなパラメータ εは

ε ∼ v̄

c
∼
(
GM̄

c2r̄

) 1
2

(
=

(
M̄

r̄

) 1
2

)
(3.1)

である。ここで、M̄, r̄, v̄は物体の質量、物体までの距離、物体の速度の標準的な
値である。なお、二つ目の関係はビリアル定理から従っている。計量は εで次の
ように展開される：

g00 = −1 + g
(2)
00 + g

(4)
00 + g

(6)
00 + · · · (3.2)

gij = δij + g
(2)
ij + g

(4)
ij + · · · (3.3)

g0i = g
(3)
0i + g

(5)
0i + · · · (3.4)

またニュートン極限との対応で、

g
(2)
00 = −2Φ , g

(2)
ij = −2Φδij (3.5)
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となる。ここで、g(n)µν はオーダー εnの gµν 項を示す。(3.4)が奇数項のみを含む
のは g0i が時間反転 t → −tの下で符号を変えなくてはならないからである。こ
れらの展開はアインシュタイン方程式と矛盾しないことを示すことによって正当
化される。そこで、g00 を O(ε4)まで、g0i を O(ε3)、gij を O(ε2)まで見ること
にする。gµλgλν = δµν から、

g00 = −1 + g00
(2)

+ g00
(4)

+ g00
(6)

+ · · · (3.6)

gij = δij + gij
(2)

+ gij
(4)

+ · · · (3.7)

g0i = g0i
(3)

+ g0i
(5)

+ · · · (3.8)

これらより、

gi0
(3)

= g
(3)
i0 , g00

(2)
= −g(2)00 , gij

(2)
= −g(2)ij (3.9)

などが成立するとわかる。次にクリストッフェル記号

Γµ
νλ =

1

2
gµρ∂λgρν + ∂νgρλ − ∂ρgνλ (3.10)

を計算する。空間と時間微分をオーダー

∂

∂xi
∼ 1

r̄
,

∂

∂t
∼ v̄

r̄
∼ ε

r̄
(3.11)

とみなす。gµν と gµν における展開を入れれば

Γµ
νλ = Γµ

νλ
(2)

+ Γµ
νλ

(4)
+ · · · for Γi

00,Γ
i
jk,Γ

0
0i (3.12)

Γµ
νλ = Γµ

νλ
(3)

+ Γµ
νλ

(5)
+ · · · for Γi

0j ,Γ
0
00,Γ

0
ij (3.13)

となる。ここで Γµ
νλ

(nはオーダー ε̄
r̄ の Γµ

νλ項を表す。これは測地線の方程式より

d2xi

dt2
= −Γi

00 − 2Γi
0j

dxj

dt
− Γi

jk

dxj

dt

dxk

dt
+

[
Γ0
00 + 200j

dxj

dt
+ Γ0

jk

dxj

dt

dxk

dt

]
dxi

dt
(3.14)

と展開されるから、εのオーダーが左辺と同じように組まれなくてはならないと
いう要請によって決まる。これらの表現で必要なものを挙げると

Γi
00

(2)
= −1

2
∂ig

(2)
00 (3.15)

Γi
00

(4)
= −1

2
∂ig

(4)
00 + ∂0g

(3)
0i − 1

2
gij

(2)
∂jg00 (3.16)

Γi
0j

(3)
=

1

2

[
∂jg

(3)
i0 + ∂0g

(2)
ij − ∂ig

(3)
0j

]
(3.17)

Γi
jk

(2)
=

1

2

[
∂kg

(2)
ij + ∂jg

(2)
ik − ∂ig

(2)
jk

]
(3.18)

Γ0
00

(3)
= −1

2
∂0g

(2)
00 (3.19)

Γ0
0i

(2)
= −1

2
∂ig

(2)
00 (3.20)
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となる。以下簡単のため、微分を ” , ”で表すことにする。(∂kgij → gij,k)これ
らを用いてリッチテンソルを計算する。クリストッフェル記号の展開の延長で、
リッチテンソルの展開は

R00 = R
(2)
00 +R

(4)
00 + · · · (3.21)

R0i = R
(3)
0i +R

(5)
0i + · · · (3.22)

Rij = R
(2)
ij +R

(4)
ij + · · · (3.23)

と考えられる。ここでR
(n)
µν はオーダー εn

r̄2 のRµν 項を示す。クリストッフェル記
号を用いると、

R
(2)
00 = −Γi

00,i

(2)
(3.24)

R
(4)
00 = −Γi

00,i

(4)
+ Γi

0i,0

(3)
+ Γ0

0i
(2)

Γi
00

(2) − Γi
00

(2)
Γj
ij

(2)
(3.25)

R
(3)
0i = Γ0

0i,0
(2)

+ Γj
0i,j

(3)
− Γ0

00,i
(3) − Γj

0j,i

(3)
(3.26)

R
(2)
ij = Γk

ij,k

(2) − Γ0
i0,j

(2) − Γk
ik,j

(2)
(3.27)

これに (3.15)∼(3.20)を代入すれば

R
(2)
00 =

1

2
∇2g

(2)
00 (3.28)

R
(4)
00 =

1

2
∇2g

(4)
00 − g

(3)
0i,0i +

1

2
g
(2)
ii,00 +

1

2
gij

(2)
g00,ij

−1

2
g
(2)
ij,ig

(2)
00,j +

1

4
g
(2)
00,ig

(2)
00,i +

1

4
g
(2)
00,ig

(2)
jj,i (3.29)

R
(3)
0i =

1

2
g
(2)
jj,0i −

1

2
g
(3)
j0,ij −

1

2
g
(2)
ij,0j +

1

2
∇2g

(3)
0i (3.30)

R
(2)
ij = −1

2
g
(2)
00,ij +

1

2
g
(2)
kk,ij −

1

2
g
(2)
ik,kj −

1

2
g
(2)
kj,ki +

1

2
∇2g

(2)
ij (3.31)

を得る。次にゲージ条件を課す。xµ が調和座標条件

gµνΓλ
µν = 0 (3.32)

を満たすとする (結局、ローレンツ条件と同等であるとわかる)。そうすると条件
式としてクリストッフェル記号の展開から

0 =
1

2
g
(2)
00,0 − g

(3)
0i,i +

1

2
g
(2)
ii,0 (3.33)

0 =
1

2
g
(2)
00,i + g

(2)
ij,j −

1

2
g
(2)
jj,i (3.34)
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となるとわかる。同様にリッチテンソルの展開から

0 =
1

2
g
(2)
ii,00 − g

(3)
i0,i0 +

1

2
g00,00 (3.35)

0 = g
(2)
ii,0j − g

(3)
i0,i0 − g

(2)
ij,i0 (3.36)

と求まる。また、(3.34)を xkについて微分を取り、その結果を添え字 iと kを交
換したものと足し合わせると

g
(2)
00,ik + g

(2)
ij,jk + g

(2)
kj,ji − g

(2)
jj,ik = 0 (3.37)

を得る。これより R
(2)
ij は

R
(2)
ij =

1

2
∇2g

(2)
ij (3.38)

と表される。同様に R
(4)
00 もまとめることができて

R
(4)
00 =

1

2
∇2g

(4)
00 − 1

2
g
(2)
00,00 −

1

2
gij

(2)g00,ij +
1

2

(
g
(2)
00,ii

)2
(3.39)

ここに (3.5)を代入すれば

R
(4)
00 =

1

2
∇2g

(4)
00 +

∂2Φ

∂t2
− 2Φ∇2Φ+ 2(∇Φ)2 (3.40)

が得られる。さらに R
(3)
0i についても

R
(3)
0i =

1

2
∇2g

(3)
0i (3.41)

が成り立つとわかる。議論をさらに進める。エネルギー・運動量テンソルについ
ては

T 00 = T 00(0) + T 00(2) + · · · (3.42)

T i0 = T i0(1) + T i0(3) + · · · (3.43)

T ij = T ij(2) + T ij(4) + · · · (3.44)

(3.45)

と展開できる。ここで Tµν (n)はオーダー εnM̄
r̄3 の Tµν 項である。場の方程式にお

いて必要なのは

Sµν = Tµν − 1

2
gµνT

λ
λ (3.46)

今までと同様に計量の展開から、エネルギー密度 T 00 のオーダーに注意して、

S00 = S
(0)
00 + S

(2)
00 + · · · (3.47)

Si0 = S
(1)
i0 + S

(3)
i0 + · · · (3.48)

Sij = S
(0)
ij + S

(2)
ij + · · · (3.49)



44 CHAPTER 3. 重力波の解析

となって、これらをエネルギー・運動量テンソルで展開を表すと

S
(0)
00 =

1

2
T 00(0) (3.50)

S
(2)
00 =

1

2

[
T 00(2) + 2g00

(2)
T 000 + T ii(2)

]
(3.51)

S
(1)
0i = −T 0i(1) (3.52)

Sij =
1

2
δijT

00(0) (3.53)

となる。ここで Rµν と Sµν の関係は

Rµν = −8πSµν (3.54)

であるから、

∇2g
(2)
00 = −8πT 00(0) (3.55)

∇2g
(4)
00 = g

(2)
00,00 + g

(2)
ij g

(2)
00,ij − g

(2)
00,ig

(2)
00,i

−8π
[
T 00(2) + 2g00

(2)
T 00(0) + T ii(2)

]
(3.56)

∇2g
(3)
0i = 16πT 0i(1) (3.57)

∇2g
(2)
ij = −8πδijT

00(0) (3.58)

となる。二次の方程式 (3.55)と (3.58)は (3.5)を満たし、

Φ = −
∫
d3x′

T 00(0)(t,x)

|x− x’|
(3.59)

であるとわかる。四次の方程式は前の結果 (3.40)を用いて

∇2g
(4)
00 = −8π

[
T 00(2) + 4ΦT 00(0) + T ii(2)

]
+ 4Φ∇3Φ− 4(∇Φ)2 − 2

∂2Φ

∂t2
(3.60)

と書ける。ここで、∇2Φ = 4πT 00(0) と、さらにライプニッツ則から

(∇Φ)2 =
1

2
∇2Φ2 − Φ∇2Φ (3.61)

が成り立つから、これらを用いて (3.60)を書き直すと

∇2
(
g
(4)
00 + 2Φ2

)
= −8π

(
T 00(2) + T ii(2)

)
− 2

∂2Φ

∂t2
(3.62)

と求まる。そこでポテンシャル Ψを

g
(4)
00 = −2Φ2 − 2Ψ (3.63)
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で定義すると Ψは方程式

∇2Ψ = 4π
(
T 00(2) + T ii(2)

)
+
∂2Φ

∂t2
(3.64)

を満たす。g(4)00 は無限遠で消えなくてはならないから、解は

Ψ(x, t) = −
∫

d3x′

|x− x’|

[
1

4π

∂2Φ(x’,t)

∂t2
+ T 00(2)(x’, t) + T ii(2)(x’, t)

]
(3.65)

である。また。新しくポテンシャル

g
(3)
i0 ≡ ζi (3.66)

を定義すると三次の式の表式 (3.57)より

ζi(x, t) = −4

∫
d3x′

T i0(1)(x’, t)

|x− x’|
(3.67)

∇2ζi = 16πT i0(1) (3.68)

そして調和座標条件 (3.32)から、Φと ζi は

4
∂Φ

∂t
+∇ · ζ⃗ = 0 (3.69)

という関係を満たす。以上より Φ, ζi,Ψを使ってクリストッフェル記号を書き表
すことができる：

Γi
00

(2)
=

∂Φ

∂xi
(3.70)

Γi
00

(4)
=

∂

∂xi
(2Φ2 +Ψ) +

∂ζi
∂t

(3.71)

Γi
0j

(3)
= −δij

∂Φ

∂t
+

1

2

(
∂ζi
∂xj

− ∂ζj
xi

)
(3.72)

Γi
jk

(2)
= −δij

∂Φ

∂xk
− δik

∂Φ

∂xj
+ δjk

∂Φ

∂xi
(3.73)

Γ0
00

(3)
=

∂Φ

∂t
(3.74)

Γ0
0i

(2)
=

∂Φ

∂xi
(3.75)

また、Tµν
;ν = 0は調和座標条件を満たす (” ;ν”は共変微分 ▽ν を表す)。これを

見るため、このエネルギー・運動量保存則の式を少し書き換えて

Tµν
,ν = −Γµ

νλT
λν − Γν

νλT
µλ (3.76)

この式について、すべての Γは少なくともオーダー ε2

r̄ であるから、最低次で

∂T 00(0)

∂t
+
∂T i0(1)

∂xi
= 0 (3.77)
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これは (3.68)と組み合わせると

∇2

(
∇ · ζ⃗ + 4

∂Φ

∂t

)
= 0 (3.78)

を示唆する。Φと ζiは無限遠で消えるから、(3.68)に調和座標条件を課したとき
に与える結果と同じである。すなわち Tµν

;ν = 0は調和座標条件を確かに満たし
ている。
　本題へ戻ろう。外部 PN場 (Φ, ζi,Ψ)にある粒子に対して、運動方程式は

δ

∫
dτ

dt
dt = 0 (3.79)

から従う。vi = dxi

dt だから(
dτ

dt

)2

= 1− v2 − g
(2)
00 − g

(4)
00 − 2g

(3)
0i v

i − 2g
(2)
ij v

ivj (3.80)

上の結果を用いて場の変数について書き表すと(
dτ

dt

)2

= 1 + (2Φ− v2) + 2(Φ2 +Ψ− ζ⃗ · v+Φv2) (3.81)

前の括弧は二次、後ろの括弧は四次の項を含んでいる。
√
1 + xの冪展開から、四

次のオーダーまでとると

dτ

dt
= 1 + Φ− 1

2
v2 − 1

8
(2Φ− v2)2 +Φ2 +Ψ− ζ⃗ · v+Φv2 (3.82)

あるいは
dτ

dt
= 1− L (3.83)

ここで

L = −Φ+
1

2
v2 − 1

2
Φ2 − 3

2
Φv2 +

1

8
(v2)2 −Ψ− ζ⃗ · v (3.84)

である。運動方程式が δ
∫

dτ
dt dt = 0から従うので、Lを一粒子のラグランジアン

とみなすことができる。従ってオイラー方程式より

dv

dt
= −∇(Φ+2Φ2+Ψ)− ∂ζ⃗

∂t
+v×(∇× ζ⃗)+3v

∂Φ

∂t
+4v(v ·∇)Φ−v2∇Φ (3.85)

と運動方程式が求まる。

3.1.2 PN漸近場

例として、任意の有限なエネルギーと運動量の分布から遠く離れた重力場を計算
する。Tµν(x, t)を r > Rで 0とする。ここで、r ≡ |x|。それから、|x− x’|−1を
r
R の逆冪で展開すると

|x− x’|−1 −→ 1

r
+

x · x’
r3

+ · · · (3.86)
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すると、

Φ −→ −M
(0)

r
− x ·D(0)

r3
+O

(
1

r3

)
(3.87)

ζi −→ −4P
(1)
i

r
−

2xjJ
(1)
ji

r3
+O

(
1

r3

)
(3.88)

Ψ −→ −M
(2)

r
− x ·D(2)

r3
+O

(
1

r3

)
(3.89)

と書くことができる。ここで、

M (0) ≡
∫
d3x T 00(0) (3.90)

D(0) ≡
∫
d3x xT 00(0) (3.91)

P i(1) ≡
∫
d3x T i0(1) (3.92)

J
(1)
ij ≡ 2

∫
d3x xiT j0(1) (3.93)

M (2) ≡
∫
d3x

(
T 00(2) + T ii(2)

)
(3.94)

D(2) ≡
∫
d3x x

(
T 00(2) + T ii(2) +

1

4π

∂2Φ

∂t2

)
(3.95)

である。なお ∂2Φ
∂t2 項はM (2)には寄与しない。なぜなら、これは (3.69)より−1

4∇· ∂ζ⃗∂t
に等しく、積分で消えてしまうからである。
　場 Ψは g00 の展開の中でのみ物理的効果を持つ：

g00 = −1− 2Φ− 2Ψ− 2Φ2 +O(ε6) (3.96)

明らかに Φを Ψだけ変位させた形 (Φ + Ψ)で書くことができる。近似の有効な
範囲で

g00 = −1− 2(Φ + Ψ)− 2(Φ + Ψ)2 +O(ε6) (3.97)

となる。Φと Ψの冪展開より、物理的に意味がある場 Φ+Ψは

Φ+Ψ −→ −M
r

− x ·D
r3

+O

(
1

r3

)
(3.98)

である。ここで

M ≡M (0) +M (2) , D ≡ D(0) +D(2) (3.99)

とおいた。量Dは物理的に重要な効果を表さないが、ちょうど場の変位となって
いる：

Φ+Ψ −→ − M

|x− D
M |

+O

(
1

r3

)
(3.100)
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エネルギーの中心に座標系の原点を取り直すことでD項を避けることができる。
これで Φと Ψについての漸近場の表式を得ることができた。
　次に ζi について考えよう。まずエネルギーと運動量の保存則を用いて Tµν の
モーメントの有用な性質をいくつか導出できる。(3.77)から、

dM (0)

dt
= 0 (3.101)

dD(0)

dt
= P(1) (3.102)

となるとわかる。エネルギー・運動量テンソルが時間に依存しないなら、(3.77)は

∂T i0(1)

∂xi
= 0 (3.103)

そしてそれゆえに、部分積分によって

0 =

∫
d3x xi

∂

∂xj
T j0(1) = −P i(1) (3.104)

0 = 2

∫
d3x xixj

∂

∂xk
T k0(1) = −J (1)

ij − J
(1)
ji (3.105)

を得る。静止系においてP(1)は消えるが、J (1)
ij が反対称であることは明らかでは

ない。このとき、
J
(1)
ij = εijkJ

(1)
k (3.106)

と書ける。J (1)
k は角運動量ベクトル

J
(1)
k ≡ 1

2
εijkJ

(1)
ij =

∫
d3x εijkx

iT j0(1) (3.107)

(3.104)と (3.117)を使って ζi の展開を書き直せば

ζi −→
2

r3
(x× J) +O

(
1

r3

)
(3.108)

となる。以上で PN近似の下での漸近場を求めることができた。

　最後に物質が球の場合を考え、Tµν(x, t) が x にのみ依存するとする。因子
|x− x’|−1 は r > r′ において角度平均によって

1

4π

∫
dΩ

|x− x’|
=

1

2

∫ π

0

sin θdθ

[r2 + 2rr′ cos θ + r′2]
1
2

=
1

r
(3.109)

となる。よって球体場の外側の至る所で

Φ = −M
(0)

r
(3.110)

ζ⃗ = −4P(1)

r
(3.111)

Ψ = −M
(2)

r
(3.112)
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と書くことができる。また、球が静止しているなら、P(1) は消える。この場合、
今までの結果から

g00 ≃ −1 +
2M

r
− 2M2

r2
(3.113)

gi0 ≃ 0 (3.114)

gij ≃ δij + 2δij
M

r
(3.115)

これは Schwarzschild解を実現する。(Appendix)

3.1.3 点粒子の系に対するPN近似

　特殊相対性理論で点粒子の系のエネルギー・運動量テンソルは

Tµν(x, t) =
∑
a

ma

∫
dτ

dxµa
dτa

dxνa
dτa

δ4 (x− xa(τa)) (3.116)

で与えられる。これを一般相対性理論に拡張しよう。
√
−gd4x (g = det gµν)は

ローレンツ不変な量であるから、δ4(x−y)/
√
−gも不変であるということを導く。

従って、点粒子の系における一般相対性理論的なエネルギー・運動量テンソルは

Tµν(x, t) =
1√
−g
∑
a

ma

∫
dτa

dxµa
dτa

dxνa
dτa

δ4(x− xa(τa))

=
1√
−g
∑
a

ma
dxµa
dτa

dxνa
dτa

(
dτa
dt

)−1

δ3(x− xa(t)) (3.117)

また PN展開として
−g = 1 + g(2) + g(4) + · · · (3.118)

となると考えられる。さらにこの近似の下では

g(2) = −g(2)00 + g
(2)
ii = −4Φ (3.119)

となる。これを (3.117)に代入し、dτ
dt = 1− Lを使うと

T 00(0) =
∑
a

maδ
3(x− xa) (3.120)

T 00(2) =
∑
a

ma

(
1

2
v2
a +Φ

)
δ3(x− xa) (3.121)

T i0(1) =
∑
a

mav
i
aδ

3(x− xa) (3.122)

T ij(2) =
∑
a

mav
i
av

j
aδ

3(x− xa) (3.123)

と求まる。エネルギー・運動量保存則の最低次の式 (3.77)と次の次数の式

∂T i0(0)

∂t
+
∂T ij(2)

∂xj
= − ∂Φ

∂xi
T 00(0) (3.124)
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を用いれば、各粒子はニュートンの運動方程式に従うとわかる：

dva

dt
= −∇Φ(xa) (3.125)

これから明らかな解として

Φ(x, t) = −
∑
a

ma

|x− xa|
(3.126)

が得られる。また Ψについては

∇2Ψ = 4π
∑
a

ma

(
Φ′

a +
3

2
v2
a

)
δ3(x− xa) +

∂2Φ

∂t2
(3.127)

と求まる。ただし、xa で決まらないニュートンポテンシャル

Φ′
a ≡ −

∑
b ̸=a

mb

|xb − xa|
(3.128)

を用いて置き換えた。これは質量のくりこみとして解釈される。よって

Ψ = −
∑
a

maΦ
′
a

|x− xa|
−3

2

∑
a

mav
2
a

|x− xa|
−1

2

∑
a

mava · v
|x− xa|

+
1

2

∑
a

va · (x− xa)v · (x− xa)

|x− xa|3
(3.129)

と書くことができる。ζi については

ζi = −4
∑
a

mav
i
a

|x− xa|
(3.130)

が得られる。以上より重力波振幅の成分 (g
(2)
00 など)を PN近似を通して得ること

ができた。これらををある物理量の下で解き、h̄µν の各成分を計算すれば、重力
波振幅の表式が得られるとわかる。

3.1.4 Einstein-Infeld-Hoffmann方程式

　エネルギー・運動量テンソルの各成分を求めるための議論を続ける。他の粒子
の場の中にある粒子のラグランジアン La は (3.155)より

La =
1

2
v2
a +

1

8
v4
a +

∑
b̸=a

mb

rab
− 1

2

∑
b,c̸=a

mbmc

rabrac
−
∑
b ̸=a

∑
c̸=a,b

mbmc

rabrbc

+
3

2
v2
a

∑
b ̸=a

mbv
2
b

rab
− 1

2

∑
b̸=a

mb

rab
[7va · vb + (va · nab)(vb · nab)]

(3.131)

である。ここで

rab ≡ |xa − xb| , nab ≡
xa − xb

rab
(3.132)

とおいた。N体系の全ラグランジアン Lは limma→0
L
ma

= Laという性質を持つ、
(ma,xa,va; a = 1, 2, · · · , N)の対称的な表式でなくてはならない。この条件は、
極限ma → 0で粒子 aは他の粒子が作る場の測地線に沿って動くということと同
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等である。よって、全ラグランジアンの表式は和の取り方に注意して次のように
あらわされる：

L =
∑
a

1

2
mav

2
a +

∑
a

1

8
mav

4
a +

1

2

∑
a,b(a̸=b)

mamb

rab
+

3

2

∑
a

mav
2
a

∑
b̸=a

mb

rab

−
∑

a,b(a̸=b)

mamb

4rab
[7va · vb + (va · nab)(vb · nab)]−

1

2

∑
a

∑
b ̸=a

∑
c̸=a

mambmc

rabrac

(3.133)

これをオイラー方程式で解いたものが Einstein-Infeld-Hoffmann(EIH)方程式と
呼ばれる。結果は

v̇a = −
∑
b ̸=a

mb
xab

rab

1− 4
∑
c̸=a

mc

rac
+
∑
c ̸=a,b

mc

(
− 1

rbc
+

xab · xbc

2r3bc

)
− 5

ma

rab

+v2
a − 4va · vb + 2v2

b −
3

2

(
va · xab

rab

)2
]

−7

2

∑
b̸=a

mb

rab

∑
c̸=a,b

mcxbc

r3bc
+
∑
b̸=a

mb
xab

r3ab
· (4va − 3vb)(va − vb) (3.134)

となる。ここで xab ≡ xa − xb である。

　具体的に a = 1, 2として PN近似で 2体問題を扱う。r ≡ r12,n ≡ n12 とおく
と、ラグランジアンは

L =
m1

2
v2
1 +

m2

2
v2
2 +

m1m2

r
+

1

8
(m1v

4
1 +m2v

4
2)

+
m1m2

2r
[3(v2

1 + v2
2 − 7va · v2 − (v1 · n)(v2 · n)]−

1

2

m1m2(m1 +m2)

r2

(3.135)

EIH方程式は、質量中心系

X =
m∗

1x1 +m∗
2x2

m∗
1 +m∗

2

(3.136)

ただし、

m∗
a ≡ ma +

1

2
mav

2
a −

1

2

mab

rab
, a ̸= b (3.137)

において加速度がないこと；
d2X

dt2
= 0 (3.138)

を示す。もしX = 0を選んだなら

x1 =

[
m2

m
+
µδm

2m2

(
v2 − m

r

)]
x (3.139)

x2 =

[
−m1

m
+
µδm

2m2

(
v2 − m

r

)]
x (3.140)
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となる。ここで

x ≡ xa − x2 , v ≡ v1 − v2 , m ≡ m1 +m2 (3.141)

δm ≡ m1 −m2 , µ ≡ m1m2

m
(3.142)

である。これらを用いてラグランジアンを書き直す。結果を µで割ったものを改
めてラグランジアンとしておくと

L =
1

2
v2+

m

r
+
1

8

(
1− 3µ

m

)
v4+

m

2r

[
3v2 +

µ

m
v2 +

µ

m

(v · x
r

)2]
−m2

2r2
(3.143)

となり、よってオイラー方程式から

v̇ = −m
r3

x

[
1− m

r

(
4 +

2µ

m

)
+

(
1 +

3µ

m

)
v2 − 3µ

2m

(v · x
r

)2]
+
m

r3
v(v·x)(4−2µ

m
)

(3.144)
と運動方程式が求まる。これより速度が求まるので、エネルギー・運動量テンソ
ルの各成分が計算できるようになった。従ってこれらの計算を通して重力波振幅
の表式を得ることができる。

3.2 合体 (merging)フェイズ

　ここでは数値相対論を扱う。

3.3 リングダウン (ring down)フェイズ

　今までと同様に、計量は背景計量に計量摂動が加わった形を持つような線形の
理論を展開する。このフェイズではブラックホール計量が背景計量であると考え、
そこからの歪みが重力波であると捉える。今まで扱ってきた線形重力波の下では
背景計量はミンコフスキー計量であった。そのため、そこに摂動を加えたときの
アインシュタイン方程式の形は摂動だけに対する単純な方程式となっていたが、
この場合では、背景計量が時空間に依存する計量となっているから、アインシュ
タイン方程式は複雑な形のままである。それゆえに、平面波を求めてきたように
ローレンツゲージを選んだとしても簡単に解くことはできない。そこで複雑なア
インシュタイン方程式を解くためにローレンツゲージとは別の適切なゲージ変換
を施し、単純な形へと変形することを考える。そのあと、施したゲージの下での
方程式を導出し、その方程式を解いて重力波振幅を求めればよい。この論文では、
まず Schwarzschildブラックホール解に対する重力波振幅の表式を求め、その後
Kerrブラックホール解に対する重力波振幅を求めるために解くべき方程式を紹介
することにした。

3.3.1 Schwarzschildブラックホールの線形摂動

　 Schwarzschildブラックホールにおける計量は線素

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (3.145)
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によって与えられる。このときの計量を Schwarzschild計量 gSµν と置いておこう。
線形理論の摂動 hµν を加えるということは考える計量 gµν が

gµν = gSµν + hµν (3.146)

であるということを示す。もちろん、hµν は gSµν に対して十分小さい。すなわち

|hµν |
|gSµν |

≪ 1 (3.147)

ということである。線形重力波における背景計量 ηµν が gµν に置き換わったとい
う事実以外は同じである。つまり、Schwarzschild計量によって添え字の上げ下げ
ができ、摂動は一次のオーダーまでとる。また Schwarzschild解を考えているの
で、球対称なブラックホールとなっているから、hµν も角度依存性を持って書か
れるはずである。すなわち、hµν(t, r, θ, ϕ)と表される。また静的なブラックホー
ルでもあるという性質から、Schwarzschild計量には時間と空間が混合する部分
は時間反転不変性により恒等的に 0になるが、計量摂動は時間的なゆらぎである
はずなので混合項は一般的に 0ではないことに注意する。
　このテンソルを評価するために、まず空間座標にのみ依存するスカラー関数の
場合を考えよう。それは球面調和関数によって展開できた：

f(r, θ, ϕ) =
∑
l,m

alm(r)Ylm(θ, ϕ) (3.148)

同様に考えてベクトルの場合、ベクトル球面調和関数によって展開できる：

V α(r, θ, ϕ) =
∑
l,m

alm(r)
[
Y B
lm(θ, ϕ)

]α
+
∑
l,m

blm(r)
[
Y E
lm(θ, ϕ)

]α
(3.149)

ここで、Y B
lm と Y E

lm は磁気型 (軸性ベクトル型)と電気型 (極性ベクトル型)を意
味する。ゆえにランク 2の対称テンソルにおいても同じ形の級数展開で書くこと
ができると考えられ、それはテンソル球面調和関数

Tµν(t, r, θ, ϕ) =
∑
l,m

alm(t, r) [Aax
lm(θ, ϕ)]µν +

∑
l,m

blm(t, r)
[
Bpol

lm (θ, ϕ)
]
µν

(3.150)

である。ここで注意することはパリティ変換の下で各項は異なるふるまいをする
ということである。Pをパリティ演算子とする。これはランク 2対称テンソル Fµν

に対して、
P
(
[Flm(θ, ϕ)]µν

)
→
[
F̃lm(π − θ, π + ϕ)

]
µν

(3.151)

という変換を施す。従って、これによりテンソル球面調和関数はパリティ変換の
下でのふるまいによって分類することができる。まず、oddあるいは axial(軸性)
について

P(Fµν) = (−1)l+1Fµν (3.152)

となる。次に、evenあるいは polar(極性)について

P(Fµν) = (−1)lFµν (3.153)

となる。それゆえに、計量摂動は oddパリティか evenパリティかで分類される
とわかる。
　これらを導入して議論する前に、”3+ 1”分解と呼ばれる、時空間を t = const.
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でパラメータ化した、空間超曲面を考えると時空間の混合部分が見やすくなり便
利である。簡単に説明すると時空間を時間と空間に分けて、空間を張る超曲面 Σ
が時間の関数で表される (Σ = Σ(t))ように書き表すということである。これによ
り、断続的な時間変化によって超曲面の物理量がどのように移り変わるかを見る
ことができる。この分解では線素は

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt)

= −(α2 − βjβj)dt
2 + 2βidx

idt+ γijdx
idxj (3.154)

となる。ここで αは lapse関数 (時間間隔の取り方を表す関数)と呼ばれ、βi は
遷移ベクトルの成分である。それから、この表式に当てはめるように計量摂動は
純時間部分 (h00)、純空間部分 (hij)、そして時空間混合部分 (h0i)で表すことが
できる：

hµν =

(
h00 h0i
hi0 hij

)
(3.155)

以下では、h00, h0i, hij の展開を用いて議論する。

3.3.2 Oddパリティ摂動：Regge-Wheeler方程式

　計量摂動の Oddパリティ部分を考える。(3.155)の成分となるように未知関数
h0(t, r), h1(t, r), h2(t, r)を使って

h00 = 0 (3.156)

h0i = h0(t, r)

0,− 1

sin θ

∑
l,m

∂ϕYlm, sin θ
∑
l,m

∂θYlm

 (3.157)

hij = h1(t, r) (ê1)ij + h2(t, r) (ê2)ij (3.158)

と書くことができる。ここでテンソル球面調和関数 (ê1,2)ij =
∑

l,m

[
(ê1,2)ij

]
lm

であり、以後指数 lmを落とし、和を取っていることにする。これらを明らかな
行列表式で書くと次のようになる：

(ê1)ij =

 0 − 1
sin θ∂ϕYlm sin θ∂θYlm

− 1
sin θ∂ϕYlm 0 0

sin θ∂θYlm 0 0

 (3.159)

(ê2)ij =


0 0 0

0 1
sin θ (∂

2
θϕ − cot θ∂ϕ)Ylm

1
2

[
1

sin θ∂
2
ϕ − cos θ∂θ − sin θ∂2θ

]
Ylm

0 1
2

[
1

sin θ∂
2
ϕ − cos θ∂θ − sin θ∂2θ

]
Ylm −

[
sin θ∂2θϕ − cos θ∂ϕ

]
Ylm


(3.160)

である。ここで ∂2θϕ = ∂θ∂ϕ である。これらの計量摂動を持つアインシュタイン
方程式は、適当なゲージ条件を選んで単純化することができる。この場合では

h2(t, r) = 0 (3.161)
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を選ぶ。このゲージでは Oddパリティ計量摂動は

haxµν =


0 0 0 h0
0 0 0 h1
0 0 0 0
h0 h1 0 0

 sin θ∂θPl(cos θ)e
imϕ (3.162)

と表せる。このゲージを Regge-Wheelerゲージという。ここで Pl(cos θ)は次数 l
のルジャンドル多項式である。最終的な結果はmに依らないと考えられるので、
m = 0とおく。結果として (3.162)におけるアインシュタイン方程式は次の方程
式たちを導く：

∂2Q

∂t2
− ∂2Q

∂r2
+

(
1− 2M

r

)[
l(l + 1)

r2
− 6M

r3

]
Q = 0 (3.163)

∂h0
∂t

=
∂

∂r∗
(r∗Q) (3.164)

ここで

Q ≡ h1
r

(
1− 2M

r

)
(3.165)

r∗ ≡ r + 2M ln
( r

2M
− 1
)

(3.166)

である。r∗はゆっくり動くという意味で亀座標と呼ばれる。なぜならそのふるま
いが r → ∞において r∗ → r であり、r → 2M において r∗ → ∞となるから
である。亀座標は特にブラックホール付近の摂動の伝搬を考察するのに用いる。
Regge-wheeler方程式 (3.163)の便利なところは、散乱ポテンシャル障壁 V (r)の
波動方程式と考えられるところである。ここで

V (r) ≡
(
1− 2M

r

)[
l(l + 1)

r2
+ p

]
, p ≡ −6M

r3
(3.167)

である。ポテンシャル (3.167)はRegge-Wheelerポテンシャルと呼ばれ、Schwarzschild
の座標系において散乱イベントが起きる境界の外側で r ∼ 3.3M の極大値を持つ。
散乱ポテンシャルを持つ波動方程式であるから、Schwarzschildブラックホールの
時空間にある摂動の伝搬は波として伝わるとわかる。他に興味深いこととして有
効ポテンシャルは、スカラーの場合 p = 2M

r3 となり、ベクトルの場合 p = 0とな
るという事実がある。

3.3.3 Evenパリティ摂動：Zerilli方程式

　 Oddパリティのときと同じように数学的なアプローチによって計量摂動を導
く。未知関数を h0(t, r), h1(t, r),H0(t, r),H1(t, r),H2(t, r),K(t, r), G(t, r)を使う
と次のように摂動を書くことができる：

h00 = −1

2

(
1− 2M

r

) 1
2

H0(t, r)Ylm (3.168)

h0i = [H1Ylm, h0∂θYlm, h0∂ϕYlm] (3.169)

hij = h1

(
f̂1

)
ij
+

H2

1− 2M/r

(
f̂2

)
ij
+ r2K

(
f̂3

)
ij
+ r2G

(
f̂4

)
ij
(3.170)
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ここでテンソル球面調和関数
(
f̂1−4

)
ij
は表式

(
f̂1

)
ij
=

 0 ∂θYlm ∂ϕYlm
∂θYlm 0 0
∂ϕYlm 0 0

 (3.171)

(
f̂2

)
ij
=

 Ylm 0 0
0 0 0
0 0 0

 (3.172)

(
f̂3

)
ij
=

 0 0 0
0 Ylm 0
0 0 sin2 θYlm

 (3.173)

(
f̂4

)
ij
=

 0 0 0
0 ∂2ϕYlm (∂2θϕ − cot θ∂ϕ)Ylm
0 (∂2θϕ − cot θ∂ϕ)Ylm (∂2ϕ − sin cos θ∂θ)Ylm

 (3.174)

を持つ。そこでゲージを
G = h0 = h1 = 0 (3.175)

と選ぶ。そうすると Evenパリティ計量摂動は次の形で書くことができる：

hpolµν =


H0

(
1− 2M

r

)
H1 0 0

H1 H2

(
1− 2M

r

)−1
0 0

0 0 r2K 0
0 0 0 r2 sin2 θK

Pl(cos θ)e
imϕ

(3.176)

この計量におけるアインシュタイン方程式は次のようになる：

∂2Z

∂t2
− ∂2Z

∂r2∗
+ Ṽ Z = 0 (3.177)

これは Zerilli方程式と呼ばれる。Zerilli関数 Z はこのゲージで

Z =
4re−4λk2 + l(l + 1)rk1
l(l + 1)− 2 + 6M/r

(3.178)

となる。ここで、e−λ ≡ 1 − 2M
r また k1, k2, k3, k4 は G,h1,K,H2 と次のような

関係を持っている：

G = k3 (3.179)

h1 = k4 (3.180)

K = k1 −
e−2λ

r

[
r2
∂k3
∂r

− 2k4

]
(3.181)

H2 = 2e−2λk2 + r
∂k1
∂r

+

(
1 + r

∂λ

∂r

)
k1 − e−λ ∂

∂r

[
r2e−λ ∂k3

∂r
− 2e−λk4

]
(3.182)
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またポテンシャル障壁は

Ṽ =

(
1− 2M

r

)[
2q(q + 1)r3 + 6q2Mr2 + 18qM2r + 18M3

r3(qr + 3M)2

]
(3.183)

である。ただし q = (l−1)(l+2)
2 である。

　まとめると (3.163)と (3.177)はそれぞれの場合における波動方程式となってお
り、計量摂動は減衰する振動解として与えられるとわかった。

3.3.4 Kerrブラックホールの線形摂動

　背景計量がKerrブラックホールの計量である場合を考える。Schwarzschildの
場合と同様にアインシュタイン方程式は複雑なままであり、適切なゲージ変換に
よって方程式を簡略化して解くしかない。この方程式を導くため、まずアインシュ
タイン方程式を簡略化する方法としてテトラッドを導入する。やることは基底を
テトラッドで書き換えたアインシュタイン方程式を導くということである。

3.3.5 アインシュタイン方程式のテトラッド表現

　 4つの線形独立な基底四元ベクトル eµ(a)(a = 0, 1, 2, 3)の組を導入する。これが
一定の対称行列 ηab を用いて

eµ(a)e(b)µ = ηab (3.184)

を満たすものとする。これをテトラッドと呼ぶ。eµ(a) の 4つの組とともにそれら
に相反であるベクトルの 4つの組 e(a)

µ を導入する。それは

e(a)µ eµ(b) = δab (3.185)

で定義され、e(a)µ は b ̸= a のとき eµ(b) と直交する。(3.185) に eν(a) を掛けると

(eν(a)e
(a)
µ )eµ(b) = eν(b) が得られるから

e(a)µ eν(a) = δνµ (3.186)

も自動的に満たされるとわかる。次に等式 eµ(a)e(c)µ = ηacの両辺に ηbcを掛けると

eµ(a)(η
bce(c)µ) = δba (3.187)

となる。(3.185)と比べると

e(b)µ = ηbce(c)µ , e(b)µ = ηbce
(c)
µ (3.188)

であるとわかる。それゆえに基底ベクトルの添え字の上げ下げは行列 ηbc によっ
て行なわれるとわかる。
　これらによって計量テンソルを表そう。四元ベクトルの共変成分と反変成分と
の間の関係の定義から、e(a)µ = gµσe

(a)σとわかり、この式に e(a)ν を掛け、(3.186)
と (3.188)を用いると

gµν = e(a)µe
(a)
ν = ηabe

(a)
µ e(b)ν (3.189)
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となる。計量テンソル (3.189)の下で、線素は

ds2 = gµνdx
µdxν = ηabe

(a)
µ dxµe(b)ν dxν (3.190)

となる。注意すべきことは、必ずしも ηはミンコフスキー計量である必要はない
ということである。
　次に四元ベクトル Aµ のテトラッド成分は基本ベクトルへ、その射影によって
定義される：

A(a) = eµ(a)Aµ , A(a) = e(a)µ Aµ = ηabA(b) (3.191)

また逆に
Aµ = e(a)µ A(a) , Aµ = eµ(a)A

(a) (3.192)

となる。テンソルに対しても同様に書けると考えられる。
　簡単のため、”aの方向に沿う”微分演算を定義する：

ϕ,a = eµ(a)
∂ϕ

∂xµ
(3.193)

また、ある量
γabc = e(a)µ;νe

µ
(b)e

ν
(c) (3.194)

(” ;ν”は共変微分)とその一次結合

λabc = γabc − γacb = (e(a)µ,ν − r(a)ν,µ)e
µ
(b)e

ν
(c) (3.195)

を導入する。ここで

▽νAµ − ▽µAν =
∂Aµ

∂xν
− ∂Aν

∂xµ
(3.196)

を使った。逆に γabc を λabc で表すと

γabc =
1

2
(λabc + λbca − λcab) (3.197)

これらの量は次の対称性をもつ：

γabc = −γbac , λabc = −λacb (3.198)

これらを用いて、リッチテンソルのテトラッド成分を決める。そのために、定義

[▽µ,▽ν ]V
ρ = Rρ

σµνV
σ (3.199)

を基底ベクトルの共変微分に適用することから始める：

e(a)ρ;µ;ν − e(a)ρ;ν;µe
ρ
(b)e

µ
(c)e

ν
(d) (3.200)

あるいは
Rabcd = (e(a)ρ;µ;ν − e(a)ρ;ν;µ)e

ρ
(b)e

µ
(c)e

ν
(d) (3.201)

この量は γabc で表せる：
e(a)µ;ν = γabce

(b)
µ e(c)ν (3.202)

となることより、スカラー量の共変微分がその単なる微分と一致することに注意
して

e(a)µ;ν;σ = γabc,σe
(b)
µ e(c)ν + γabcγ

b
dfe

(d)
µ e(f)σ e(c)ν + γabce

(b)
µ γcdfe

(d)
ν e(f)σ (3.203)
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となる。よってリーマンテンソルは

Rabcd = γabc,d − γabd,c + γabf (γ
f
cd − γfdc)γafcγ

f
bd − γafdγ

f
bc (3.204)

を得る。ただし γabc = ηadγdbc である。このテンソルを a, cについて縮約すれば
リッチテンソルが得られる。これを λabc で表せば

Rab = −1

2

(
λab

c
,c + λba

c
,c + λcca,b + λccb,a + λcdbλcda

+λcdb λdca −
1

2
λb

cdλacd + λccdλab
d + λccdλba

d

)
(3.205)

と求まる。
　以上により、アインシュタイン方程式をテトラッド表現で書き表すことができた。

3.3.6 Newman-Penrose formalism

　先ほど導入したテトラッドを用いて、基底をヌルベクトルに選ぶ。これを実行
するため、基底となるヌルベクトルを lµ, nµ,mµ, m̄µ と選び、lµ, nµ は実ベクト
ル、mµは複素ベクトル、m̄µはmµの複素共役とする。この 4つの組を複素ヌル
テトラッドという。これらの関係として

lµl
µ = nµn

µ = mµm
µ = m̄µm̄

µ = 0 (3.206)

lµm
µ = lµm̄

µ = nµm
µ = nµm̄

µ = 0 (3.207)

lµn
µ = 1 , mµm̄

µ = −1 (3.208)

を要求する。テトラッドのベクトルを

eµ1 = lµ , eµ2 = nµ , eµ3 = mµ , eµ4 = m̄µ (3.209)

とすれば、上の関係より対称行列 ηは

ηab = ηab =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

 (3.210)

となる。また

eµ1 = eµ2 = lµ , eµ2 = eµ1 = nµ (3.211)

eµ3 = −eµ4 = mµ , eµ4 = −eµ3 = m̄µ (3.212)

という関係が成り立つ。以上の形式化を Newman-Penrose formalismという。

3.3.7 Teukolsky方程式

　前の節とその前の節でテトラッドを用いたアインシュタイン方程式の簡略化の
方法を説明してきた。これらを用いて方程式を書き下す。Kerrブラックホールの
計量は

ds2 = −
(
1− 2Mr

Σ

)
dt2+

4Mar sin2 θ

Σ
dtdϕ+

Σ

∆
dr2+Σdθ2+sin2 θ

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
dϕ2

(3.213)
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で表される。ここで

Σ = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 (3.214)

である。またM はブラックホールの質量である。ここでテトラッドを

lµ =

(
r2 + a2

∆
, 1, 0,

a

∆

)
, nµ =

(
r2 + a2

2Σ
, 0,

a

2∆

)

mµ =

(
ia sin θ√

2(r + ia cos θ
, 0,

1√
2(r + ia cos θ)

,
i√

2 sin θ(r + ia cos θ)

)
(3.215)

とすれば、Newman-Penrose formalismによりアインシュタイン方程式は次の方
程式に書き換えることができる：(

(r2 + a2)2

∆
− a2 sin2 θ

)
∂2Ψ

∂t2
+

4Mar

∆

∂2Ψ

∂t∂ϕ
+

(
a2

∆
− 1

sin2 θ

)
∂2Ψ

∂ϕ2

−∆2 ∂

∂r

(
1

∆

∂Ψ

∂r

)
+ 4

(
M(r2 − a2)

∆
− r − ia cos θ

)
∂Ψ

∂t
− 1

sin θ

∂

∂θ

(
sin θ

∂Ψ

∂θ

)

+4

(
a(r −M)

∆
+
i cos θ

sin2 θ

)
∂Ψ

∂ϕ
+ (4 cot2 θ + 2)Ψ = 0 (3.216)

この方程式を Teukolsky方程式という。ここで Ψは

Cρσµν = Rρσµν−
2

n− 2
(gρ[µRν]σ−gρ[µRν]ρ)+

2

(n− 1)(n− 2)
gρ[µgν]σR (3.217)

と書き表される、リーマンテンソルの対称性の性質を保持し、さらに共形変換で
不変であるテンソル；ワイルテンソルを用いて作ったワイルスカラーと呼ばれる
量である。少し詳しく言うとNewman-Penrose formalismによってテトラッドと
ワイルテンソルは組み合わされてワイルスカラーが構成される。この表式を見れ
ばわかるようにこのワイルテンソルの中に計量摂動の情報が含まれていて、この
方程式を解けば重力波振幅の表式が得られるとわかる。



まとめ

　線形重力波では重力波の偏極や重力波による全エネルギー損失率などの重力波
の性質を見てきた。それらは第三章で扱った Inspiralフェイズにおいても評価で
きる量である。なぜなら、重力波放射の過程は非常に長く、線形重力波の近似の
下でも十分な場合として考えられるからである。しかしながら、重力波の理論波
形をより正確に求めるには線形近似を行わず厳密な方程式を解くしかない。それ
には数値的な手法が必ず必要になる。そこで扱うのが 3章で議論した数値相対論
である。本論文では、フェイズを 3つに分けて解析しそれぞれの場合で線形だが
異なる近似方法を使ってきたが、この論理に則るならば、すべて数値相対論で扱
うべきである。なお、本論文で導出した 3つの方程式、Regge-Wheeler方程式、
Zerilli方程式、Teukolsky方程式を数値的に解いても十分よい解析ができるだろ
う。なぜなら、Ring downフェイズで扱うブラックホールが線形近似できる範囲
では摂動は十分小さい（そもそも重力波は小さい）のでこの方程式に従うと容易
に考えられるからである。線形的な近似を扱えてきたのは重力波は物質との結び
つきが非常に弱いことからであり、それ以上の評価が必要でないくらい小さかっ
たからである。未だ検出が難しい重力波がこれから如何にして観測されていくの
か期待するところは多い。
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Appendix A

楕円運動の計算

半長軸を a、離心率を eとし、これらを全エネルギー E(E < 0)と角運動量 Lに
関して表すと

a = −m1m2

2E
(A.1)

e2 = 1 +
2EL2(m1 +m2)

m3
1m

3
2

(A.2)

二つの星の間の距離は

r =
a(1− e2)

1 + e cos θ
(A.3)

であり、各星の座標は

r1 =
m2

m1 +m2
r

r2 =
m1

m1 +m2
r (A.4)

と表される。議論の混乱を防ぐため、以下 (x1, x2, x3) = (x, y, z)と置く。四重極
モーメントは前の節と同じように計算すれば求まり、

Ixx =
m1m2

m1 +m2
r2 cos θ

Iyy =
m1m2

m1 +m2
r2 sin θ (A.5)

Ixy = Iyx =
m1m2

m1 +m2
r2 sin θ cos θ

となる。角運動量は L = m1m2

m1+m2
r2θ̇(ここで θ̇ = dθ

dt ,以下” ˙ ”は時間微分を表す)

だから、半長軸と離心率を用いて

θ̇ =
m1 +m2

m1m2

L

r2
=

1

r2
m1 +m2

m1m2

[
m3

1m
3
2(e− 1)

2E(m1 +m2

] 1
2

=
1

r2
[(m1 +m2)a(1− e2)]

1
2

(A.6)
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となり、これと (A.3)から

ṙ =
a(1− e2)

(1 + e cos θ)2
e sin θθ̇

=
a(1− e2)

(1 + e cos θ)2
e sin θ

{
1 + e cos θ

a(1− e2)

}2 [
(m1 +m2)a(1− e2)

] 1
2

= e sin θ

(
m1 +m2

a(1− e2)

) 1
2

(A.7)

が従う。四重極モーメントを微分し、振幅と四重極公式を求める。(µ = m1m2

m1+m2
)

İxx =
m1m2

m1 +m2

[
2rṙ cos2 θ − 2r2θ̇ sin θ cos θ

]
= 2µr

[
e sin θ

(
m1 +m2

a(1− e2)

) 1
2

cos2 θ − 1

r

{
(m1 +m2)a(1− e2)

} 1
2 sin θ cos θ

]

= 2µr sin θ cos θ

[
e

(
m1 +m2

a(1− e2)

) 1
2

cos θ − 1 + e cos θ

a(1− e2)

{
(m1 +m2)a(1− e2)

} 1
2

]

= 2r
m1m2

m1 +m2
sin θ cos θ

[
−
{
m1 +m2

a(1− e2)

} 1
2

]

= − 2m1m2

[(m1 +m2)a(1− e2)]
1
2

r sin θ cos θ (A.8)

Ïxx = − 2m1m2

[(m1 +m2)a(1− e2)]
1
2

(
ṙ sin θ cos θ + rθ̇ cos2 θ − rθ̇ sin2 θ

)
= − 2m1m2

[(m1 +m2)a(1− e2)]
1
2

[
e

{
m1 +m2

a(1− e2)

} 1
2

sin2 θ cos θ

+(1 + e cos θ)

{
m1 +m2

a(1− e2)

} 1
2

cos2 θ − (1 + e cos θ)

{
m1 +m2

a(1− e2)

} 1
2

sin2 θ

]

= − 2m1m2

[(m1 +m2)a(1− e2)]
1
2

(
m1 +m2

a(1− e2)

) 1
2

×[
e sin2 θ cos θ + cos2 θ + e cos3 θ − sin2 θ − e sin2 θ cos θ

]
= − 2m1m2

a(1− e2)

{
cos 2θ + e cos3 θ

}
(A.9)

...
I xx =

2m1m2

a(1− e2)
θ̇(2 sin 2θ + 3e sin θ) (A.10)

İyy = µ(2rṙ sin2 θ + 2r2θ̇ sin θ cos θ)

= 2µr

[
e

(
m1 +m2

a(1− e2)

) 1
2

sin3 θ + (1 + e cos θ)

(
m1 +m2

a(1− e2)

) 1
2

sin θ cos θ

]

=
2m1m2

[(m1 +m2)a(1− e2)]
1
2

r(sin θ cos θ + e sin θ) (A.11)
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Ïyy =
2m1m2

[(m1 +m2)a(1− e2)]
1
2

{
ṙ

(
1

2
sin 2θ + e sin θ

)
+ rθ̇(cos 2θ + e cos θ)

}
=

2m1m2

a(1− e2)
(e sin2 θ cos θ + e2 sin2 θ + cos 2θ + e cos θ + e cos 2θ cos θ + e2 cos2 θ)

=
2m1m2

a(1− e2)
(cos 2θ + e cos θ + e cos3 θ + e2) (A.12)

...
I yy = − 2m1m2

a(1− e2)
θ̇(2 sin 2θ + e sin θ + 3e cos2 θ sin θ) (A.13)

İxy = µ(2rṙ sin2 θ cos θ + r2θ̇ cos2 θ − r2θ̇ sin2 θ)

=
m1m2r

[(m1 +m2)a(1− e2)]
1
2

[
2e sin2 θ cos θ + (cos2 θ − sin2 θ) + e cos θ(cos2 θ − sin2 θ)

]
=

m1m2r

[(m1 +m2)a(1− e2)]
1
2

[
cos2 θ − sin2 θ + e sin2 θ cos θ + e cos3 θ

]
=

m1m2

[(m1 +m2)a(1− e2)]
1
2

r(cos2 θ − sin2 θ + e cos θ) (A.14)

Ïxy =
m1m2

[(m1 +m2)a(1− e2)]
1
2

[
ṙ(cos2 θ − sin2 θ + e cos θ) + rθ̇(−2 sin 2θ − e sin θ)

]
=

m1m2

a(1− e2)

[
e sin θ cos 2θ + e2 sin θ cos θ − 2 sin 2θ − e sin θ − 2e cos θ sin 2θ − e2 cos θ sin θ

]
=

m1m2

a(1− e2)

[
e sin θ cos2 θ − e sin3 θ − 2 sin 2θ − e sin θ − 4e cos2 θ sin θ

]
= − 2m1m2

a(1− e2)
(sin 2θ + e sin θ + e sin θ cos2 θ) (A.15)

...
I xy = − 2m1m2

a(1− e2)
θ̇(2 cos 2θ + e cos θ + e cos3 θ − 2e(1− cos2 θ) cos θ)

= − 2m1m2

a(1− e2)
θ̇(2 cos θ − e cos θ + 3e cos3 θ) (A.16)



Appendix B

PN近似の計算

gµλgλν = δµν から、

g00 = −1 + g00
(2)

+ g00
(4)

+ g00
(6)

+ · · · (B.1)

gij = δij + gij
(2)

+ gij
(4)

+ · · · (B.2)

g0i = g0i
(3)

+ g0i
(5)

+ · · · (B.3)

これらより、

giµg0µ = gi0g00 + gijgj0

=
(
gi0

(3)
+ gi0

(5)
+ · · ·

)(
−1 + g

(2)
00 + g

(4)
00 + · · ·

)
+
(
δij + gij

(2)
+ gij

(4)
+ · · ·

)(
g
(3)
j0 + g

(5)
j0 + · · ·

)
=

(
−gi0(3) + g

(3)
i0

)
+
(
−gi0(5) + g

(5)
i0

)
+ · · · (B.4)

∴ gi0
(3)

= g
(3)
i0 などが成立

……これは測地線の方程式より

d2xi

dt2
=

(
dt

dτ

)−1
d

dτ

[(
dt

dτ

)−1
dxi

dτ

]

=

(
dt

dτ

)−2
d2xi

dτ2
−
(
dt

dτ

)−3
d2t

dτ2
dxi

dτ
= −Γi

νλ

dxν

dt

dxλ

dt
+ Γ0

νλ

dxν

dt

dxλ

dt

dxi

dt

= −Γi
00 − 2Γi

0j

dxj

dt
− Γi

jk

dxj

dt

dxk

dt
+

[
Γ0
00 + 200j

dxj

dt
+ Γ0

jk

dxj

dt

dxk

dt

]
dxi

dt

(B.5)
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と展開されるから、εのオーダーが左辺と同じように組まれなくてはならないと
いう要請によって決まる。これらの表現で必要なものを挙げると

Γi
00 =

1

2
giρ(gρ0,0 + g0ρ,0 − g00,ρ)

=
1

2
gij(2gj0,0 − g00,j)

=
1

2
(δij + gij

(2)
)(2g

(3)
0j,0 − g

(2)
00,j − g

(4)
00,j)

= g
(3)
0i,0 −

1

2
g
(2)
00,i −

1

2
g
(4)
00,i −

1

2
gij

(2)
g
(2)
00,j (B.6)

∴ Γi
00

(2)
= −1

2
g
(2)
00,i

Γi
00

(4)
= −1

2
g
(4)
00,i + g

(3)
0i,0 −

1

2
gij

(2)
g
(2)
00,j (B.7)

Γi
0j =

1

2
giρ(gρ0,j + gjρ,0 − g0j,ρ)

=
1

2
(δik + gik

(2)
)(g

(3)
0k,j + g

(2)
jk,0 − g

(3)
0j,k)

=
1

2
g
(3)
0i,j +

1

2
g
(2)
ij,0 −

1

2
g
(3)
0j,i + · · · (B.8)

∴ Γi
0j

(3)
=

1

2
g
(3)
0i,j +

1

2
g
(2)
ij,0 −

1

2
g
(3)
0j,i (B.9)

Γi
jk =

1

2
gil(gjl,k + glk,j − gjk,l)

=
1

2
(δil + gil

(2)
)(g

(2)
jl,k + g

(2)
lk,j − g

(2)
jk,l)

=
1

2
g
(2)
ji,k +

1

2
g
(2)
ik,j −

1

2
g
(2)
jk,i + · · · (B.10)

∴ Γi
jk

(2)
=

1

2
g
(2)
ij,k +

1

2
g
(2)
ik,j −

1

2
g
(2)
jk,i (B.11)

Γ0
00 =

1

2
g0ρ(2gρ0,0 − g00,ρ)

=
1

2
g00g00,0 +

1

2
g0i(2gi0,0 − g00,i)

=
1

2
(−1 + g00

(2)
+ g00

(4)
)(g

(2)
00,0 + g

(4)
00,0) + · · ·

= −1

2
g
(2)
00,0 + · · · (B.12)
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∴ Γ0
00

(3)
= −1

2
g00,0 (B.13)

Γ0
0i =

1

2
g0ρ(gρi,0 + g0ρ,i − g0i,ρ)

=
1

2
(−1 + g00

(2)
+ g00

(4)
)(g

(3)
0i,0 + g

(2)
00,i + g

(4)
00,i − g

(3)
0i,0) + · · ·

= −1

2
g
(2)
00,i + · · · (B.14)

∴ Γ0
0i

(2)
= −1

2
g
(2)
00,i (B.15)

まとめると

Γi
00

(2)
= −1

2
∂ig

(2)
00 (B.16)

Γi
00

(4)
= −1

2
∂ig

(4)
00 + ∂0g

(3)
0i − 1

2
gij

(2)
∂jg00 (B.17)

Γi
0j

(3)
=

1

2

[
∂jg

(3)
i0 + ∂0g

(2)
ij − ∂ig

(3)
0j

]
(B.18)

Γi
jk

(2)
=

1

2

[
∂kg

(2)
ij + ∂jg

(2)
ik − ∂ig

(2)
jk

]
(B.19)

Γ0
00

(3)
= −1

2
∂0g

(2)
00 (B.20)

Γ0
0i

(2)
= −1

2
∂ig

(2)
00 (B.21)



Appendix C

Schwarzschild解の導出

　静止した球対称な物体がつくる静的で球対称な場である。ここではWeylの考
案に従って変分法を用いて解く。空間座標の原点に静止している質量M の球対
称の孤立した物体の周りの重力場を求める。源の物体から十分離れたところ (漸
近的に Lorentz系)では、

gµν → ηµν +O(r−1) (C.1)

となるものとする。ここで、

r =
√
(x1)2 + (x2)2 + (x3)2

また、x0 = ctは (C.1)のために無限遠では特殊相対論的な、つまり観測という
立場から見ても有意義な時間変数である。今、四次元不変距離 ds2 を

ds2 = −A(r)(dx0)2 +B(r)

3∑
k=1

(dxk)2 + C(r)dx0
3∑

k=1

xkdxk +D(r)(

3∑
k=1

xkdxk)2

(C.2)
とおける。これは球対称という条件が満たす最も一般的な形である。ここでA,B
は正の rだけの関数。しかし時間の反転に対しても不変とすれば、C = 0さらに
B = 1と置くことができる。これを以下で見ていく。
　 x1, x2, x3 の代わりに球座標 (r, θ, ϕ)を使うと、上の B(r)の項は

B(r)(dr)2 +B(r)r2
{
(dθ)2 + sin2 θ(dϕ)2

}
(C.3)

となる。いま
r′ = r

√
B(r) (C.4)

あるいは、これを逆に rについて解いたものを

r = f(r′) (C.5)

とおけば

ds2 = −A{f(r′)}(dx0)2 + (dr′)2 + (r′)2{(dθ)2 + sin2 θ(dϕ)2}

+
1

(r′)2

[
B {f(r′)}

{
df(r′)

dr′

}2

− 1 +D {f(r′)}
{
f
df

dr′

}2
]
(r′dr′)2

(C.6)
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
∵) (dr)2 =

(
df(r′)

dr′
dr′
)2

(
3∑

k=1

xkdxk

)2

= (rdr)2 =

(
f(r′)

df(r′)

dr′
dr′
)2

ここで
x′1 = r′ sin θ cosϕ, x′2 = r′ sin θ sinϕ, x′3 = r′ cos θ (C.7)

とおけば

ds2 = −A {f(r′)} (dx0)2 +
3∑

k=1

(dxk
′
)2 + E(r′)

(
3∑

k=1

xk
′
dxk

′

)2

(C.8)

となる。E(r′)は (C.6)の最後の項の (r′dr′)2 の前の係数である。それでこれか
ら、球対称静的重力場の ds2 として、改めて

ds2 = −A(r)(dx0)2 +
3∑

k=1

(dxk)2 +B(r)

(
3∑

k=1

xkdxk

)2

(C.9)

とおく。A,B は rの正の未知関数である。(C.9)から、
gik = ηik +Bxixk

g00 = −A
gi0 = 0

この逆を求めると、 
gik = ηik − B

1 + r2B
xixk

g00 = − 1

A
gi0 = 0

である。これを使うと

gµν =


−A 0 0 0
0 1 +Bx2 Bxy Bxz
0 Bxy 1 +By2 Byz
0 Bxz Byz 1 +Bz2



g = det(gµν = −A

∣∣∣∣∣∣
1 +Bx2 Bxy Bxz
Bxy 1 +By2 Byz
Bxz Byz 1 +Bz2

∣∣∣∣∣∣
= −A{(1 +Bx2)(1 +By2)(1 +Bz2) +B3x2y2z2 +B3x2y2z2

−(1 +Bx2)B2y2z2 − (1 +By2)B2x2z2 − (1 +Bz2)x2y2}
= −A(1 +Br2)

∴
√
−g =

√
A(1 + r2B) ≡ ∆ (C.10)
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となる。あるいは、A,B の代わりに上で定義した∆と

ψ ≡
√
1 + r2B (C.11)

を独立の未知関数に採ることができる。さて、0でない Γλ
µν は

Γi
kl =

1

2
giλ(∂kglλ + ∂lgλk − ∂λgkl

=
1

2
giλ(∂k(Bx

lxλ) + ∂l(Bx
λxk)− ∂λ(Bx

kxl))

=
1

2
giλ(Bxλδλk +Bxlδlk +Bxλδkl

+Bxkδlλ −Bxlδkλ + (∂kB)xlxλ + (∂lB)xλxk − (∂λB)xkxl)

= giλ
(
Bxλδkl +

1

2

xkxlxλ

r
B′
)

=

(
ηiλ − B

1 + r2B
xixλ

)(
Bxλδkl +

1

2

xkxlxλ

r
B′
)

= Bxiδkl −
B2

1 + r2B
r2xiδkl +

1

2

xkxlxi

r
B′ − r2B

2r(1 + r2B)
xkxlxiB′

=
B

1 + r2B
xiδkl +

xkxlxi

2r(1 + r2B)
B′

=
xi

2r(1 + r2B)
(2rBδkl + xkxlB′)

ここで B′ = dB
dr である。また

Γi
00 =

1

2
giλ(∂0gλ0 + ∂0g0λ − ∂λg00

= −1

2

(
ηiλ − B

1 + r2B
xixλ

)
∂λ(−A(r))

=
1

2

xi

r
A′ − 1

2

B

1 + r2B
xixλ

xλ

r
A′

=
1

2r(1 + r2B)
{xi(1 + r2B)A′ −Bxir2A′}

=
A′xi

2r(1 + r2B)

ここで A′ = dA
dr である。

Γ0
0k =

1

2
g0λ(∂0gkλ + ∂kg0λ − ∂λg00)

=
1

2
g00(∂0gk0 + ∂kg00 − ∂0g00)

= −1

2

1

A
(−∂kA) =

A′xk

2rA
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上の Γλ
µν から、

Γµ
µν = gµλΓ

λ
µν =

1

2
gµλg

λδ(∂µgνδ + ∂νgµδ − ∂δgµν)

=
1

2
gµδ(∂µgνδ + ∂νgδµ − ∂δgµν

=
1

2
gµδ∂νgµδ =

1

2

1

g
∂νg

= (
√
−g)−1∂ν(

√
−g) = ∂ν ln∆

[
∵) ∂ν det(gµδ) = ggµδ∂νgµδ

g−1∂νg = 2(
√
−g)−1∂ν(

√
−g)

Γµ
µk = ∂k ln∆ =

xk

r

∂

∂r
ln∆(r) =

xk

r

∆′

∆

Γµ
µ0 = ∂0 ln∆(r) = 0

となる。そこで、gµνΓρ
µνΓ

λ
λρ を計算するため、以下の計算を実行する：


Γµ
µk = Γ0

0k + Γi
ik =

A′xk

2Ar
+

xi

2r(1 + r2B)
(2Brδik + xixkB′)

= xk
[
A′

2Ar
+

2Br

2rψ2
+
r2B′

2rψ2

]
=
xk

r

∆′

∆



gµνΓi
µν = g00Γi

00 + gjkΓi
jk

= − 1

A

A′xi

2r(1 + r2B)
+

(
ηjk − B

1 + r2B
xjxk

)
xi

2r(1 + r2B)
(2Brδjk + xjxkB′)

= − A′xi

2r∆2
+

6Brxi

2rψ2
+
r2B′xi

2rψ2
− 2xiB2r3 + xir4BB′

2rψ4


ψ′ =

d

dr

√
1 + r2B =

2rB + r2B′

2
√
1 + r2B

=
r(2B + rB′)

2ψ

∆′ =
d

dr

√
A(1 + r2B) =

A′(1 + r2B) +Ar(2B + rB′)

2
√
A(1 + r2B)

=
A′ψ2 +Ar(2B + rB′)

2∆
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= −x
i

r

A′

2∆2
+
xi

r

(
6Br

2ψ2
+
r2B′

2ψ2

)
− xi

r

(
2B2r3

2ψ4
+
r4BB′

2ψ4

)
= −x

i

r

1

∆ψ2

(
A′ψ2

2∆
+

(2rB + r2B′)A

2∆

)
+

xiA

2r∆2ψ2
(2rB + r2B′)

+
xi

r

ψ′

ψ
+
xi

r

2Br

ψ2
− xi

r

r2B(2rB + r2B′)

2ψ4

= −x
i

r

∆′

∆ψ2
+
xi

r

Aψ′

∆2ψ
+
xi

r

ψ′

ψ
+
xi

r

2Br

ψ2
− xi

r

r2Bψ′

ψ3

= −x
i

r

∆′

∆ψ2
+
xi

r

ψ′

ψ3
+
xi

r

ψ′

ψ
+
xi

r

2Br

ψ2

xi

r

ψ′

ψ3
− xi

r

(
ψ′

ψ3
+
r2Bψ′

ψ3

)
= −x

i

r

∆′

∆ψ2
+
xi

r

2ψ′

ψ3
+
xi

r

2Br

ψ2

=
xi

r

2ψ′

ψ3
− xi

r

∆′

∆ψ2
+
xi

r

2r

ψ2

(
ψ2 − 1

r2

)
=

xi

r

2ψ′

ψ3
− xi

r

∆′

∆ψ2
+
xi

r

2

r

(
1− 1

ψ2

)
以上より、

gµνΓρ
µνΓ

λ
λρ =

(
2ψ′

ψ3
− ∆′

∆ψ2
+

2

r

(
1− 1

ψ2

))
xkxk

r2
∆′

∆

=
2∆′ψ′

∆ψ3
− (∆′)2

∆2ψ2
+

2

r

(
1− 1

ψ2

)
∆′

∆

また、

gµνΓρ
µσΓ

σ
νρ = gikΓρ

iσΓ
σ
kρ + g00Γρ

0σΓ
σ
0ρ

= gikΓl
ijΓ

j
kl + g00Γm

00Γ
0
0m

(第一項) = gik

[{
1

2r(1 + r2B)

}2

xl(2Brδij + xixjB′)xj(2Brδkl + xkxlB′)

]

=
gik

4r2ψ4
xlxj(4B2r2δijδkl + 2Br3xkxlδijB

′ + 2BrxixjδklB
′ + xixjxkxlB′2)

=
gik

4r2ψ4
(4r2B2xkxi + 2Br3xixkB′ + 2Br3xixkB′ + r4xixkB′2)

=
1

4r2ψ4

(
ηik − B

1 + r2B
xixk

)
4r2ψ4(4r2B2xkxi + 4Br3xixkB′ + r4xixkB′2)

=
1

4ψ4

[
4r2B2 + 4Br3B′ + r4B′2 − B

1 + r2B

{
4r4B2 + 4r5BB′ + r6B′2}]

=
1

4ψ4

1

1 + r2B
(4r2B2 + 4Br3B′ + r4B′2)

=
1

4ψ4

1

ψ2

{
2rB(2rB + r2B′) + r2B′(2rB + r2B′)

}
=

1

2ψ5
(2rBψ′ + r2B′ψ′) =

ψ′2

ψ4
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(第二項) = g00
A′xm

2r(1 + r2B)

A′xm

2Ar
= − 1

4A2

A′2r2

r2(1 + r2B)
= − A′2

4∆2A(
A′ =

1

ψ2

(
2∆∆′ − 2∆2ψ′

ψ

))
以上より

gµνΓρ
µσΓ

σ
νρ =

ψ′2

ψ4
− ψ2

4∆4

(
2∆∆′

ψ2
− 2∆2ψ′

ψ3

)2

=
ψ′2

ψ4
− ψ2

4∆4

{
4∆2(∆′)2

ψ4
− 8∆3∆′ψ′

ψ5
+

4∆4(ψ′)2

ψ6

}
=

ψ′2

ψ4
− (∆′)2

∆2ψ2
+

2∆′ψ′

∆ψ3
− ψ′2

ψ4

=
2∆′ψ′

∆ψ3
− (∆′)2

∆2ψ2

結局、重力場の作用積分 IG = 1
16π

∫
d4xG

[
∵)G =

√
−ggµν

(
Γλ
µρΓ

ρ
νλ − Γλ

µνΓ
ρ
λρ

)]
は

IG =
1

16π

∫
d4x

√
−ggµν(Γρ

µσΓ
σ
νρ − Γρ

µνΓ
λ
λρ)

= − 1

16π

∫
drdθdϕdx0 r2 sin θ

2

r

(
1− 1

ψ2

)
d∆

dr

つまり

I ′ =

∫
dr

(
1−− 1

ψ2

)
d∆

dr
r (C.12)

の ψおよび∆に関するオイラー方程式を求めればよい。
ψについて

d

dr

∂L
∂(∂ψ)

− ∂L
∂ψ

= 0 ⇔ 2r

ψ3

d∆

dr
= 0

∴ d∆

dr
= 0 (C.13)

従って
∆ = b =一定 (C.14)

また、∆に関する変分からは

d

dr

∂L
∂(∂∆)

− ∂L
∂∆

= 0 ⇔ d

dr

{
r

(
1− 1

ψ2

)}
= 0

そこで、

r

(
1− 1

ψ2

)
= a =一定 (C.15)

a, bを使ってもとの A(r), B(r)を求めると

A(r) =
∆2

ψ2
, B(r) =

1

r2
(ψ2 − 1) (C.16)
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あるいは (C.15)より

A(r) = b2
(
1− a

r

)
, B(r) =

a

r2(r − a)
(C.17)

ここで、境界条件 (C.1)のために、r → ∞で A → 1となる。そのため b = 1。
従って線素は

ds2 = −
(
1− a

r

)
(dx0)2 +

3∑
k=1

(dxk)2 +
a

r2(r − a)

(
3∑

k=1

xkdxk

)2

(C.18)

となる。直交座標 xk を極座標 (r, θ, ϕ)で書き直せば

ds2 = −
(
1− a

r

)
(dx0)2 + (dr)2 + r2

{
(dθ)2 + sin2 θ(dϕ)2

}
+

a

r2(r − a)
(rdr)2

= −
(
1− a

r

)
(dx0)2 +

1

1− a
r

dr2 + r2
{
(dθ)2 + sin2 θ(dϕ)2

}
(C.19)

となる。A,B が正であるためには r > aでなければならないとわかる。最後に、
積分定数 aを決めるには r → ∞における g00 の漸近形を調べればいい。r → ∞
では

gµν(x) = ηµν + hµν(x) |hµν(x) ≪ 1| (C.20)

とニュートン極限の要求
h00 = −2Φ (C.21)

により (c,Gを戻すと)

g00 → η00 −
2

c2
Φ , Φ = −GM

r
(C.22)

となる。ここでM は原点にある物質の静止質量である。この境界条件を満たす
ためには、

a

r
=

2

c2
GM

r
∴ a =

2GM

c2
(C.23)

ととらねばならない。aを源の物質の重力半径という。
　 Schwarzschildの解を求めるのに、gµν が時間に無関係という過程を設けた。こ
れをしなくても、源の物質が球対称の質量分布をしているならば、たとえ物質が
時間とともに動径方向の運動をしているとしても、球対称性が破られない限り、
物質の存在しない領域の ds2は上の形になる。これを Birkhoffの定理という。こ
の定理の帰結として、源の物質の r方向の振動に対して、空間の計量は静的な物
質の場合と変わらないから、重力波は放出されないとわかる。



Appendix D

Kerr解の導出

　回転するブラックホールを考える。まず、アインシュタイン方程式を書き換え
ることから始める。計量 gµν を

gµν(x) = ηµν + alµlν (D.1)

とおく。ηµν はミンコフスキー計量である。また、lµ(x)は

ηµν lµ(x)lν(x) = 0 (D.2)

という条件を満たす量である。あるいは、

lµ(x) ≡ ηµν lν(x) (D.3)

とおけば
lµlµ = 0 (D.4)

が成り立つ。また (D.1)の aは任意パラメータである。lµ のこの性質を使うと

gµν = ηµν − alµlν (D.5)

となう。さらに (D.4)から
lµ = gµν lν (D.6)

も成り立つ。(D.1),(D.5)から定義に従って Γλ
µν を作ると

Γα
βµl

µ =
1

2
gαλ(∂βgµλ + ∂µgβλ − ∂λgβµ)l

µ) (D.7)

となる。ここで (D.4)を微分して

∂ν(lµl
µ) = 2lµ∂ν lµ = 2lµ∂ν l

µ = 0 (D.8)

であるから

Γα
βµl

µ =
1

2
(ηαλ − alαlλ){∂β(ηµλ + alµlλ) + ∂µ(ηβλ + alβlλ)− ∂λ(ηβµ + alβlµ)}lµ

=
a

2
ηαλ(∂βlµlλ + ∂µlβlλ − ∂λlβlµ)l

µ

=
a

2
(∂µlβl

α)lµ =
a

2
∂µ(l

αlβ)l
µ (D.9)
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となる。また、
lµ▽λl

µ = lµ▽λlµ = lµ(∂λlµ − Γν
λµlν) (D.10)

は上の関係式から

lµ▽λl
µ = lµ▽λlµ = −lµΓν

λµlν

= −a
2
∂µ(l

ν lλ)l
µlν = 0 (D.11)

となる。さて、det {gµν(x)}を計算するために点 xにおいて空間軸の回転を行う。
なぜなら、空間回転に対して det(gµν)は不変だからである。そこで、回転後の 1
点 x′ における l′µ の成分を

l′µ = {l′0 = l′1 = l , l′2 = l′3 = 0} (D.12)

とする。このような l′µ に対する g′µν(x
′)は

g′µν =


−1 + al2 al2 0 0
al2 1 + al2 0 0
0 0 1 0
0 0 0 1

 (D.13)

となる。これから、g(x) = g′(x′) = −1と求まる。すなわち、gはベクトル lµの
成分の大きさや方向に無関係であるとわかる。これを使うと

Γλ
λµ = ∂µ{{ln

√
−g} = 0 (D.14)

となる。そこで、物質のない領域におけるアインシュタイン方程式は

Rµν = Rλ
µνλ = ∂νΓ

λ
µλ − ∂νΓ

λ
µν + Γτ

µλΓ
λ
ντ − Γλ

τλΓ
τ
µν

= −∂λΓλ
µν + Γτ

µλΓ
λ
ντ = 0 (D.15)

となるとわかる。
　さて、Γλ

µν の定義から Γ·
·· = a2A+aBのような形であることがわかる。A,Bは

lや lの一階微分からなる量で aには無関係である。これを (D.15)に代入すると、
Rµν = a4( ) + a3( ) + a2( ) + a( )の形になる。( )はいずれも l, ∂l

∂x ,
∂2l

∂x∂x
の関数であるが、aには無関係である。aは任意のパラメータであるから、(D.15)
が成立するためには、aの各べきの係数が 0となる必要がある。それを以下に並
べて書く：

a1の係数： ηαβ∂αΓβ,µν = 0 (D.16)

a2の係数： 2∂α(l
αlβΓβ,µν) +

2

a
ηαρηβσΓρ,µβΓσ,να = 0 (D.17)

a3の係数： (lαlρηβσ + lβlσηαρ)Γρ,µβΓσ,να = 0 (D.18)

a4の係数： lαlρlβlσΓρ,µβΓσ,να = 0 (D.19)

以上の 4組の式がアインシュタイン方程式である。まず 4番目の式の左辺は lµが
(D.2)を満たす限り、どんなものでも恒等的に 0となる。なぜなら、(D.7),(D.8)
を使うと、

Γρ,µβl
ρlβ = ησρΓ

ρ
µβl

ρlβ = ησρl
ρ a

2
∂β(l

ρlµ)l
β = 0 (D.20)
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となるからである。3番目の式は

lαlρηβσ(Γρ,µβΓσ,να + Γρ,νβΓσ,µα) = 0 (D.21)

と書き換えることができる。この Γを lを用いて書き表し、さらに (D.4),(D.8)を
使うと

lα∂αl
β · lρ∂ρlβ · lµlν = 0 (D.22)

となる。あるいは、
vβ ≡ lα∂αl

β (D.23)

と書くことにすれば
vλ ≡ gλβv

β = ηλβv
β = lα∂αlλ (D.24)

となる。したがって、(D.22)は

(vβvβ)lµlν = 0 (D.25)

つまり
(vβvβ) = 0 (D.26)

が成立する。vα はさらに lα とも直交する。すなわち (D.8)により

vαlα = lµ∂µl
α · lα = 0 (D.27)

いま
l0 = (l0, l) , vα = (v0, v)

とおけば、(D.2)および (D.26)から

|l0| = |l | , |v0| = |v |

である。さらに (D.27)から

vαlα = −v0l0 + (l · v) = 0

あるいは l と v の間の角を θとすると、

v0l0 = |l0||v0| cos θ

したがって、l0と v0が同符号ならば θ = 0だし、異符号ならば θ = πである。つ
まり四元ベクトルとして lµ と vµ は平行である。そこで

lµ∂µl
α ≡ vα ≡ −A(x)lα (D.28)

とおくことができる。もし lµ(x)がわかっていれば、A(x)はそれを用いて書き表
される。(D.28)が 3番目の式から導かれる結論である。次に一番目の式を lを用
いて具体的に書くと

ηαβ∂α(ησβΓ
σ
µν) = ηαβησβ

{
a

2
(∂µlν l

σ + ∂ν l
σlµ − ησλ∂λlµlν) +

a2

2
lσlλ∂λlµlν

}
=

a

2
{∂α(lµ∂ν lα + lα∂ν l

µ) + ∂α(l
α∂µl

ν + lν∂µl
α)

−ηαβησβ∂αησλ∂λ(lµlν)
}
+
a2

2
∂σl

σlλ∂λlµlν
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∴ ∂α(lµ∂ν l
α + lα∂ν lµ) + ∂α(l

α∂µlν + lν∂µl
α)−□(lµlν) = 0

となる。ここで □ ≡ ηµν∂µ∂ν である。いま、

▽αl
α ≡ ∂αl

α + Γα
αβl

β = ∂αl
α ≡ −L (D.29)

とおけば、上式は

−∂ν(Llµ)− ∂µ(Llν) + ∂µ(Llν) + ∂µvν + ∂νvµ −□(lµlν) = 0 (D.30)

となる。(D.28)を代入すると

−□(lµlν) = ∂µ{(L+A)lν}+ ∂ν{(L+A)lµ} (D.31)

となる。最後に、lµが (D.31)を満足するならば、そのような lµは 2番目の式を
も満たすことが証明できる。
　（証明）まず 2番目の式を lを用いて具体的に書く。 ∂l

∂xα を l,α で表すと

−lαlβ(lµlν),αβ − (lαlβ),α(lµlν),β + lµlν l
α,β(lβ,α − lα,β)

+(lµlν,α + lν lµ,α)l
βlα,β + lµ,αlν,βl

αlβ = 0 (D.32)

はじめの二項をまとめると、vµ の定義を用いて

lµlν(−2AL− 4A2 + 2lαA,α)

となる。

∵) − lαlβ(lµlν),αβ(lµlν)− (lαlβ),α(lµlν),β

= −lαlβ(lµ,αlν,β + lµ,βlν,α + lµlν,αβ + lµ,αβlν)

= −(lα,αl
β + lαlβ,α)(lµ,βlν + lµlν,β)

(lµlα,µ = vα = −A(x)lαを使うと)

(右辺) = −vµvν − vµvν − lβlµvν,β + lβlµl
α
,βlν,α − lβvµ,βlν + lβlν l

α
,βlµ,α

− lα,αvµlν − lα,αlµvν − vβlµ,βlν − vβlµlν,β

= −2A2lµlν + lβlµ(A,βlν +Alν,β) + lβlν(A,βlµ +Alµ,β)

− LAlµlν − LAlµlν +Avµlν +Avν lµ

= −4A2lµlν − 2ALlµlν + 2lβA,βlµlν

∴ (はじめの二項) = lµlν(−2AL− 4A2 + 2lαA,α)

また (D.32)の第四項は vα の定義を使うと

(lµlν,α + lν lµ,α)l
ρlα,β = (lµlν,α + lν lµ,α)(−Alα)

= A2lµlν +A2lµlν = 2A2lµlν

となる。最後の項は A2lµlν に等しい。結局 (D.32)は

lµlν{−AL−A2 + lα(A+ L),α + lα□lα} = 0 (D.33)
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となる。

∵) (第三項) = lµlν l
α,β(lβ,α) = lµlν(AL− lαA,α + lαL,α + lα□lα)(

L,α = −(lβ,β),β),α = −lβ,βα , lα□lα = lαlα,β
β
)

lα,βlβ,α = (lαlβ,α)
,β − lαlβ,α

β = vβ
,β + lαL,α

= −A,βlβ −Alβ
,β + lαL,α

= −A,βlβ +AL+ lαL,α

lα,βlα,β = (lαlα,β)
,β − lαlα,β

β = −lαlα,ββ = −lα□lα(
(lαlα,β)

,β = (lαlα),β
β − (lα,βlα)

,β = 0
)

ところで、(D.31)に lν を掛けると (D.2),(D.8)から

(左辺) = −lν□(lµlν) = −lµlν□lν

(右辺) = lµ{lν(L+A),ν −A(L+A)}

となる。従って、(D.31)から

−lν□lν = lν(L+A),ν −A(L+A) (D.34)

が導かれる。これを使うと (D.33)は自動的に成立するとわかった。（証明終わり）
　結局アインシュタイン方程式を解くには、(D.31)だけを解けばいい。

　未だ l(x)に対して (D.2)以外は特別な制限を設けてはいない。そこで時空間が
定常な場合；lµ は x0 に無関係な場合を考える。まず (D.2)から

lµ = ((l0(x), l0λ⃗(x)) (D.35)

とおく。ただし
(λ⃗)2 = 1 (D.36)

である。解くべき方程式 (D.31)の 00成分は

−□{(l0)2} = 2∂0{(L+A)l0} (D.37)

である。しかし、定常条件の為に時間微分は全て 0となるから

△{(l0)2} = 0 (D.38)

つぎに µ = 0, ν の代わりに j(= 1, 2, 3)とおくと

−△{λj(l0)2} = ∂j{(L+A)l0} (D.39)

となる。最後に i, j = 1, 2, 3に対して

−△{(l0)2λiλj} = ∂i{(L+A)l0λj}+ ∂j{(L+A)l0λi} (D.40)
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ここで

L = −li,j = −∂i(l0λj)
Al0 = −lk∂kl0 = −l0λk∂kl0 (D.41)

すなわち
A = −λk∂kl0 (D.42)

である。さて、(D.38)を使うと (D.39)は

(l0)
2△λj + 2∂kλj∂k{(l0)2} = −∂j{l0(L+A)} (D.43)

また (D.40)の左辺に (D.39)を代入し、その結果を対してさらに (D.43)を使えば

−△{(l0)2λiλj} = ∂i∂j(L+A)l0 + ∂jλi(L+A)l0

−λj△{λi(l0)2} − λi△{λj(l0)2}
= l0(L+A)(∂iλj + ∂jλi)

−(l0)
2λj△λi − 2λj∂kλi · ∂k{(l0)2}

−(l0)
2λi△λj − 2λi∂kλj · ∂k{(l0)2}

(左辺) = −λiλj△{(l0)2} − (l0)
2λi△λj − (l0)

2λj△λi
−2∂k(l0)

2∂k(λiλj)− 2(l0)
2∂kλi∂kλj

∴ 2(l0)
2λi,kλj,k = −l0(L+A)(λj,i + λi,j)

となる。あるいは

λj,i + λi,j =
1

p
λi,kλj,k (D.44)

となる。ここで
2l0p ≡ −(L+A) = (l0λj),j + λkl0,k (D.45)

あるいは、三次元ベクトルで書くと

2l0p = 2λ⃗gradl0 + l0divλ⃗ (D.46)

となる。以上で l0 と λ⃗ を決める方程式は (D.38),(D.39),(D.44) である。なお、
ニュートンポテンシャル Φに対し

g00 = η00 − 2Φ

とおけば (D.1)から

(l0)
2 = −2

a
Φ

従って (D.2)は物質のない場所におけるポアソン方程式

△Φ = 0

に相当するとわかる。

　さて、λ⃗は
λiλi = 1
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であるから
λiλi,k = 0 (D.47)

そこで (D.44)に λj を掛けると

λjλi,j = 0 (D.48)

となる。ここで 3× 3行列Mの ij要素を

(M)ij ≡ λi,j (D.49)

と定義すれば (D.44)は

(M)ij + (M)ji =
1

p
(M)ik(M)jk

あるいは

(Mt +M)ij =
1

p
(MMt)ij (D.50)

となる。ここでMt はMの転置行列である。また

λ̂t = (λ1 λ2 λ3)

λ̂ =

 λ1
λ2
λ3


と書くことにすれば、(D.47)は

λ̂M = 0

または全体の転置をとると
Mtλ̂ = 0 (D.51)

同様に (D.48)は
Mλ̂ = 0 (D.52)

そこで (D.50),(D.51),(D.52)からMを λ̂の関数として求めることを考える。ま
ず 1点 xにおいて、空間座標系を直交回転して

λ⃗(x) → λ⃗′(x) = (1, 0, 0) (D.53)

となるようにする。この回転の行列をRとすれば

Rλ̂ = λ̂′ =

 1
0
0

 (D.54)

Rは直交行列であるから
RRt = RtR = 1

従って
λ̂ = Rtλ̂′

そこで (D.52)は
MRtλ̂′ = 0
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あるいは
M′ ≡ RMRt (D.55)

とおけば

M′

 1
0
0

 = 0 (D.56)

となる。同様に (D.51)から
RMtRtλ̂′ = 0

あるいは

(M′)t

 1
0
0

 = 0 (D.57)

(D.56),(D.57)から

M′

 0 0 0
0 c d
0 e f

 ≡
(

0 0
0 N′

)
(D.58)

という形をしていることがわかる。N′ は 2× 2行列である。従って

M = RtM′R = Rt

(
0

N′

)
R (D.59)

ところで、(D.50)に左からR、右からRt を掛けると

M′t +M′ =
1

p
M′(M′)t

あるいは 2行 2列の部分行列で書くと

N′t +N′ =
1

p
N′(N′)t (D.60)

となる。いま、2× 2行列Uを

U = 12 −
1

p
N′ (D.61)

と定義する。12 は 2× 2単位行列である。このUは直交行列となる。なぜなら

UUt =

(
12 −

1

p
N′
)(

12 −
1

p
(N′)t

)
= 12 −

1

p
(N′ + (N′)t) +

1

p2
N′N′t

(D.60)を使うと
UUt = 12

従って
Ut = U−1 , UtU = 12
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だからである。Uの定義式 (D.61)でもしN′ → 0とすればU → 12 となること
を考えると二次元の直交行列としては

U =

(
cos θ − sin θ
sin θ cos θ

)
だけである。θは x⃗のある関数である。そこでN′ は

N′ = p(12 −U) = p

(
1− cos θ sin θ
− sin θ 1− cos θ

)
(D.62)

従って

M = Rt

(
0

N′

)
R

となる。これを要素で書くと、i, k = 1, 2, 3に対して

(M)ik =
3∑

j,l=2

(Rt)ij(N
′)jlRlk

= p(1− cos θ)

3∑
j=2

RjiRjk + p sin θ(R2iR3k −R3iR2k) (D.63)

となる。ところで λ̂ = Rtλ̂′ であるから

λi = (Rt)i1 = R1i

従って、
3∑

j=2

RjiRjk =

3∑
j=1

(Rt)ijRjk −R1iR1k = δik − λiλk (D.64)

また det(R) = 1であるから

εijk =


1 : (i, j, k) → (1, 2, 3)が偶置換

−1 : (i, j, k) → (1, 2, 3)が奇置換

0 : その他

を使うと
1 = εijkR1iR2jR3k

あるいは

εijk = εabcRaiRbjRck

= λi(R2jR3k −R3jR2k) + λj(R2kR3i −R3kR2i) + λk(R2iR3j −R3iR2j)

ところでRλ̂ = λ̂′ から

R1kλk = λkλk = 1 , R2kλk = 0 , R3kλk = 0

であるから、上の εijk に λk を掛けると

εijkλk = R2iR3j −R3iR2j (D.65)
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(D.64),(D.65)を使うと、(D.63)は

Mik = p(1− cos θ)(δik − λiλk) + p sin θεiklλl (D.66)

となる。あるいは p, θの代わりに

α ≡ p(1− cos θ) , β ≡ p sin θ (D.67)

とおけば、
Mik ≡ λi,k = α(δik − λiλk) + βεiklλl (D.68)

となる。i, kを縮約すれば
divλ⃗ = 2α (D.69)

となる。また
λi,k − λk,i = 2βεiklλl

であり、ベクトル記号を使うと

rotλ⃗ = −2βλ⃗ (D.70)

と表される。また (D.68)に ∂kを掛け、さらに (D.70)を使うとベクトル記号では

△λ⃗ = gradα− λ⃗(λ⃗ · gradα)− 2(α2 + β2)λ⃗− λ⃗× gradβ (D.71)

となる。

∵)(△λ⃗)i = ∂kλi,k = ∂k{α(δik − λiλk)}+ ∂k{βεiklλl}

= (gradα)i − λiλk(gradα)k − α(λi,kλk + λiλk,k) + (gradβ × λ⃗)i − β(rotλ⃗)i

= (gradα)i − λiλk(gradα)k − αλidivλ⃗− (λ⃗× gradβ)i − 2β2λi

∴ △λ⃗ = gradα− λ⃗(λ⃗ · gradα)− 2(α2 + β2)λ⃗− λ⃗× gradβ

一方、(D.70)から
rot(rotλ⃗) = −2rot(βλ⃗)

これに (D.69),(D.70)を代入すると

grad divλ⃗−△λ⃗ = −2{−λ⃗× gradβ + βrotλ⃗}
⇔

2gradα−△λ⃗ = 2λ⃗× gradβ + 4β2λ⃗

∴ △λ⃗ = 2gradα− 2λ⃗× gradβ − 4β2λ⃗ (D.72)

となる。(D.71)と比べると

gradα = λ⃗× gradβ − λ⃗(λ⃗ · gradα)− 2(α2 − β2)λ⃗ (D.73)

であるとわかる。これと λ⃗の内積をとると

(λ⃗ · gradα) = λ⃗ · (λ⃗× gradβ)− λ⃗ · λ⃗(λ⃗ · gradα)− 2(α2 − β2)λ⃗ · λ⃗

∴ (λ⃗ · gradα) = β2 − α2 (D.74)
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従って、(D.73)は

gradα = λ⃗× gradβ − (α2 − β2)λ⃗ (D.75)

となる。次に (D.70)の divを求めると

div(rotλ⃗) = −2div(βλ⃗) ∴ div(βλ⃗) = 0

となる。(D.69)を代入すると

λ⃗ · gradβ + βdivλ⃗ = 0 (λ⃗ · gradβ) = −2αβ (D.76)

また (D.75)と λ⃗のベクトルの積をとり、少し書き直しをすれば

gradβ = −(λ⃗× gradα)− 2αβλ⃗ (D.77)

となる。 
∵)λ⃗× gradα = λ⃗× (λ⃗× gradβ)− (α2 − β2)λ⃗× λ⃗

= (λ⃗ · gradβ)λ⃗− (λ⃗ · λ⃗)gradβ

= −2αβλ⃗− gradβ

以上をまとめると

gradα = λ⃗× gradβ − (α2 − β2)λ⃗

gradβ = −(λ⃗× gradα)− 2αβλ⃗

(λ⃗ · gradα) = β2 − α2

(λ⃗ · gradβ) = −2αβ

となる。ここで
γ(x) ≡ α+ iβ

という複素関数を導入し、両辺の gradをとると上の関係式から

gradγ = −iλ⃗× gradγ − γ2λ⃗ (D.78)

となる。また残りの二つは

(λ⃗ · gradγ) = −γ2 (D.79)

(D.78)の両辺の divをとり、(D.69),(D.70),(D.79)を使うと

div gradγ = −idiv(λ⃗× gradγ − div(γ2λ⃗)

⇔
△γ = −igradγ · (rotλ⃗) + iλ⃗ · rot gradγ − γ2divλ⃗− λ⃗ · gradγ2

= 2iβλ⃗ · gradγ − 2αγ2 − 2γλ⃗ · gradγ
= −2iβγ2 − 2αγ2 + 2γγ2 = 0

∴ △γ2 = 0 (D.80)
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が導かれる。また (D.78)の 2乗を計算すると

(gradγ)2 = (iλ⃗× gradγ + γ2λ⃗)2

= −(λ⃗× gradγ) · (λ⃗× gradγ) + 2iγ2λ⃗ · (λ⃗× gradγ) + γ4

= λ⃗ · {(λ⃗× gradγ)× gradγ}+ 0 + γ4

= −λ⃗ · {(gradγ)2λ⃗− (λ⃗ · gradγ)gradγ}+ γ4

= −(gradγ)2 + γ4 + γ4

∴ (gradγ)2 = γ4 (D.81)

となる。ここで

ω ≡ 1

γ
(D.82)

とおけば (D.81)は
(gradω)2 = 1 (D.83)

となる。そこで (D.87)により γ を決め、その大きさを (D.81)により規格化すれ
ば、この α, β を用いて λ⃗が以下のように決まる。
　まず、(D.78)を −γ2 で割ると

gradω = −iλ⃗× gradω + λ⃗ (D.84)

従って
(λ⃗ · gradω) = 1 (D.85)

複素共役をとると
(λ⃗gradω∗) = 1 (D.86)

また
gradω × gradω∗ = Bλ⃗− i(gradω + gradω∗) (D.87)

となる。

∵)gradω × gradω∗ = −(−iλ⃗× gradω + λ⃗)× (iλ⃗× gradω∗ + λ⃗)

= −(λ⃗× gradω)× (λ⃗× gradω∗)− (iλ⃗× gradω)× λ⃗+ λ⃗× (iλ⃗× gradω∗)

= {(λ⃗× gradω) · gradω∗}λ⃗− {(λ⃗× gradω) · λ⃗}gradω∗

+ i(λ⃗ · gradω)λ⃗− igradω + i(λ⃗ · gradω∗)− igradω∗

= 2iλ⃗− gradω∗ · (gradω × λ⃗)λ⃗− i(gradω + gradω∗)

ここで
B ≡ 2i− {gradω∗ · (gradω × λ⃗)} (D.88)

である。(D.87)と gradωとの内積をとると (D.83),(D.85)から

B = 2i+ {gradω∗ · (igradω − iλ⃗)}
= i(1 + gradω∗ · gradω) (D.89)

これを (D.87)に代入すると

λ⃗ =
1

B
{gradω × gradω∗ + i(gradω + gradω∗)}

=
gradω + gradω∗ − igradω × gradω∗

1 + gradω∗ · gradω
(D.90)
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そこで γあるいはその逆数 ωさえわかれば λ⃗が決まる。最後にやることは、l0を
α, β から決めることである。まず

△(l0)
2 = 0

および
△(l20λj) = −∂j{l0(L+A)}

の解で、さらに (D.40)と矛盾しないものは

(l0)
2 = CRe(γ) = Cα (D.91)

である。C は任意の定数。これが解であることを示し、その後で解の一意性を証
明すれば十分である。
(証明)△γ = 0だから△α = 0。従って、(D.38)は満たされている。次に、(D.39)
の左辺に Cαを代入すると

(左辺) = C△(αλj) = Cα△λj + 2C∂kα∂kλj

ところで (D.68),(D.72)を使い、さらに

(gradω)2 = 1 (D.92)

から導かれる関係式

α4 − 6α2β2 + β4 = (gradα)2 − (gradβ)2

2αβ(α2 − β2) = (gradα · gradβ) (D.93)



∵)(gradα)2 = (λ⃗× gradβ − (α2 − β2λ⃗)2

= (λ⃗× gradβ) · (λ⃗gradβ)− 2λ⃗ · (λ⃗× gradβ)(α2 − β2) + (α2 − β2)2

= λ⃗ · {(gradα · gradβ)λ⃗− (gradβ · λ⃗)gradβ}+ (α2 − β2)2

= (gradβ)2 − 4α2β2 + (α2 − β2)2

∴ (gradα)2 − (gradβ)2 = α4 − 6α2β2 + β4

gradα · gradβ = {λ⃗× gradβ − (α2 − β2)λ⃗}gradβ
= −(α2 − β2) · (−2αβ) = 2αβ(α2 − β2)

を使うと、
(D.39)の左辺 = C∂j(α

2 + β2) (D.94)

となる。次に、(D.39)の右辺は (D.72),(D.42)を使うと

−∂j{l0(L+A)} = ∂j∂k(l
2
0λk) = C∂j∂k(αλk)

これに (D.69),(D.74) を代入すると (D.94) に一致する。従って (l0)
2 = Cα は

(D.38)を満足する。(証明終わり)
　これで解は完全に求まった。Cαを改めて αとおく。まとめると

△γ = 0
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を満たし、{grad
(

1
γ

)
}2 = 1に規格化された γ = α+ iβ を用いると、gµν を

gµν = ηµν + alµlν

lµ = l0(1, λ1, λ2, λ3)

(λ⃗)2 = 1

のように書くとき、l0 は
(l0)

2 = Re(γ) = α

また λ⃗は (D.90)で与えられる (ω = 1
γ )。これを α, β で書き直すと

λ⃗ =
(β2 − α2)gradα− 2αβgradβ − gradα× gradβ

(α2 − β2)2 + (gradβ)2
(D.95)

となる。
　最後に (l0)

2 = Cαが唯一の解であることを示す。いま空間のある領域の表面
上における (l20)の境界値が与えられているものとする。また γ = α + iβ は既に
わかっているものとする。従って λ⃗も既知量である。そこで、(l0)

2が満たすべき
式は

△(l0)
2 = 0

△(l20λj) = ∂j∂k(l
2
0λk)

△(l20λiλj) = ∂i{λj∂k(l20λk)}+ ∂j{λi∂k(l20λk)}

である。最後の式は λiを決定するのに使われた。(D.38),(D.39)を満たす限り λi,k
の形も一意的に決まる。それゆえに、(D.40)から決まる λiに対して (D.38),(D.39)
を満たす (l0)

2 が一通りしかないことを示せばよい。いまそのような解が 2個あ
るとして、これらを l0(1), l0(2) とする。その差を

φ ≡ (l0(1))
2 − (l0(2))

2

とおく。二つの解は同じ境界条件 φ = 0を満たす。(D.38),(D.39)を l0(1), l0(2)に
対して書き、(1)と (2)の差を求めると

△φ = 0 , △(φλj) = ∂j∂k(φλk) (D.96)

となる。ところで (D.96)の解で φ = 0という境界条件を満足する φは φ = 0し
かない。よって解は一意である。(証明終わり)

　これから、方程式
△γ = 0

ならびに規格化条件
(gradω)2 = 1

を満たす解を求める。この特解として

γ = {(x − a)2} 1
2

が考えられる。a が実数ならば、これは重力場の中心が座標原点ではなく、点 a
にある場合の Schwarzschildの解である。しかし、a が複素数の成分を持つとき、
すなわち

a = (0, 0, ih) h :実数 (D.97)
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とおくとき事情は異なる。これより

γ =
1

{x2 + y2 + (z − ih)2} 1
2

=
1

{x2 + y2 + z2 − h2 − 2ihz} 1
2

(D.98)

そこで
ω = {x2 + y2 + z2 − h2 − 2ihz} 1

2 ≡ ρ+ iσ (D.99)

とおく。あるいは、

ρ2 − σ2 = r2 − h2

ρσ = −zh (D.100)

r =
√
x2 + y2 + z2

(D.99)から、r ≫ hでは ρ ≈ rとなることがわかる。ρ, σを使って書くと

γ =
ρ− iσ

ρ2 + σ2

従って

α = (l0)
2 =

ρ

ρ2 + σ2
=

ρ3

ρ4 + (zh)2
(D.101)

λ⃗を求めるためには gradωを計算すればいい。それは (D.99)から求まる：

gradω =
1

ω

1

2
(2r − 2ihk =

x − ihk

ω
(D.102)

ここで k は z軸の正の向きを指す単位ベクトルである。そこで (D.90)から

λ =
x−ihk

ω + x+ihk
ω∗ − i x−ihk

ω × x+ihk
ω∗

1 + r2+h2

|ω|2

=
2{ρx − hσk + h(x × k)}

|ω|2 + r2 + h2
(D.103)

となる。これを成分で書くと

λ1 =
ρx+ hy

ρ2 + h2
, λ2 =

ρy − hx

ρ2 + h2
, λ3 =

z

ρ
(D.104)

となる。これを使うと線素は

ds2 = −(dx0)2+(dx )2+
aρ3

ρ4 + (hz)2

{
dx0 +

ρ(xdx+ ydy)

ρ2 + h2
+
h(ydx− xdy)

ρ2 + a2
+
zdz

ρ

}2

(D.105)
ここで

ρ =
r2 − h2

2
+

√
(
r2 − h2

2
)2 + (hz)2 (D.106)

である。これが Kerrブラックホールの計量である。ここから座標変換を施せば
本論文で扱った形と一致する。
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