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概 要

経路積分は，R. P. Feynmanによって創始された量子化の手法である．その概念を大ざっぱに述べるな
らば，粒子の位置 q(t)が時空で辿る経路を，取り得る全てについて足し合わせる，というようなもので
ある．もう少し数学的にアプローチすれば，これは汎関数の積分になる．つまり，経路 q(t)を作用汎関
数 S[q(t)]の引数として見たとき，q(t)の取り得る全ての関数形を考え，それを連続的に足し合わせる，
ということである．例えば，粒子がある始状態 |q′, t′⟩から終状態 |q, t⟩へ至る遷移確率振幅は経路積分の
表式で

K(q, t; q′, t′) =

∫
Dq(t)eiS[q(t)]/ℏ =

∫
Dq(t) exp

[
i

ℏ

∫
dtL(t)

]
と書ける．これらの式の詳しい議論は本論に譲るが，このように，経路積分では，その著しい特徴とし
て，量子力学において頻繁に用いられる演算子という概念が現れない．
Feynmanはこの経路積分の考え方を，自身の論文Space-Time Approach to Non-relativistic Quantum

Mechanics (1948)で述べている．それまでは，Schrödingerによる，正準形式を演算子に置き換える手
法，すなわち正準量子化が広く用いられていた．現在も正準量子化は極めて有効な量子化の手法ではあ
るが，経路積分法は量子力学に対して，正準量子化とは異なる知見をもたらした．その一つとして，解
析力学における最小作用の原理と，量子力学との関連性を挙げることができるだろう．これは，経路積
分における位相 eiS/ℏにおいて，ℏ → 0の極限を考えることで見ることができる．このとき，経路積分に
おいては，鞍点法を考えることにより，作用が最も小さくなる項の寄与が大きくなることがわかる．こ
れはまさに最小作用の原理を表しており，経路積分の表式では，量子力学から古典力学への移行が自然
に行われる．
しかし，経路積分は，その性質上無限次元の積分を扱うことになり，現在でも数学的に正当な方法で

は定式化できていない．また，一見演算子形式とまるで異なっているため，両者が等価な方法だとはと
ても信じがたい．そこで，本論文では，このような疑問の下，演算子法と経路積分法の比較を行った．
第 1章では，まず解析力学におけるHamilton形式から出発し，正準量子化を経て演算子を導入する．

その後演算子法を概観し，とくに時間発展演算子 U を議論する．
第 2章では，最初に位相空間 (q, p)における経路積分を導出する．その際，演算子は通常の変数に変

換しなければならないので，そのときに元々の演算子の順序が問題となる．この順序についての解決法
として，Weyl順序と呼ばれる正規化された順序を導入し，中点処方と呼ばれる方法との関連を見る．結
果として，一般のハミルトニアンの場合における位相空間内の経路積分表示を得ることができる．その
後，ハミルトニアンの形を仮定し，それにより位相空間内の運動量積分を実行する．その結果，配位空
間における Feynmanの経路積分を得る．この配位空間の経路積分が，二連井戸型ポテンシャルの計算
において使う表式となる．
第 3章では，前章までの経路積分の知識を生かし，二連井戸型ポテンシャルの基底エネルギーを導出

することを目指す．計算に当たっては，WKB法で古典経路まわりの展開を行う．その際，インスタン
トンと呼ばれる非常に重要な概念を導入する．また，分配関数からエネルギーを計算するので，周期的
境界条件が課された Feynman核を経路積分で計算することになる．
第 4章では，演算子形式で二連井戸型ポテンシャルの基底エネルギーを求めることを目指す．前章と同

様WKB法を用いるため，まず最初にWKB法のまとめを行い，次に二連井戸型ポテンシャルのWKB

解を構成する．その後，基底エネルギーが調和振動子からほとんどずれないことを使って，逐次近似に
よる解を構成する．こうして作った 2つの解が比例することを使い，基底エネルギーの調和振動子から
のずれを導く．最後に，この結果が，経路積分法による計算結果と完全に一致することを見る．
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第1章 演算子形式による量子力学

この章では，演算子形式による量子力学を概観し，正準量子化による量子化を行う．

1.1 正準量子化

一般化座標が qm (m = 1, 2, · · ·N)である力学系のラグランジアンが，qm(t)とその時間微分 q̇m(t) =

dqm/dtの関数として L = L(q, q̇)で与えられているものとする．qmに共役な運動量 pmは

pm =
∂L

∂q̇m
(1.1)

で定義される．またこの系のハミルトニアンは Legendre変換

H(q, p) =

N∑
m=1

pmq̇
m − L (1.2)

で定義される．以下の式では和の規約を用い，あらわな
∑
は省略する．このとき，(1.2)よりL = pmq̇

m−H
であって，これに最小作用の原理を適用することを考える．作用 Sは

S =

∫ t2

t1

dtL =

∫ t2

t1

dt (pmq̇
m −H) (1.3)

であるから，その変分をとれば 1

0 = δS

=

∫ t2

t1

dt

(
q̇mδpm + pmδq̇

m − ∂H

∂qm
δqm − ∂H

∂pm
δpm

)
(1.4)

となる．ここで第 2項目を部分積分すると，端点の変分はゼロ 2として∫ t2

t1

dtpm
d(δqm)

dt
= −

∫ t2

t1

dtṗmδq
m (1.5)

とできる．よって作用の変分は

δS =

∫ t2

t1

dt

[(
q̇m − ∂H

∂pm

)
δpm −

(
ṗm +

∂H

∂qm

)
δqm

]
= 0 (1.6)

のように計算される．正準形式では q, pは独立であると考えるので，上式が恒等的に成り立つためには

q̇m =
∂H

∂pm
, ṗm = − ∂H

∂qm
(1.7)

1変数を例えば q なら q → q + δq としてその差をとれば良い．ハミルトニアンは H(q + δq, p+ δp)−H(q, p)としてテイ
ラー展開すれば良い．

2δq(t1) = δq(t2) = 0の意．
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でなければならない．これをHamiltonの正準方程式という．
次に，ある力学変数 F = F (q(t), p(t), t)を考えよう．ただし，q, pは qm, pmの略記である．これを時

間で全微分すれば
dF

dt
=
∂F

∂t
+

∂F

∂qm
q̇m +

∂F

∂pm
ṗm (1.8)

となり，さらに上で導出した正準方程式を用いれば

dF

dt
=
∂F

∂t
+

∂F

∂qm
∂H

∂pm
− ∂F

∂pm

∂H

∂qm
(1.9)

となる．これはとくに F が陽に時間によらない場合，

Ḟ = {F,H}P (1.10)

と書ける．これは F に対する古典的運動方程式である．ただしここで Poisson括弧

{A,B}P ≡ ∂A

∂qm
∂B

∂pm
− ∂B

∂qm
∂A

∂pm
(1.11)

を用いた．またこの Poisson括弧は正準座標 qm, pmに対しては

{qm, pn}P = δmn, {qm, qn}P = {pm, pn}P = 0 (1.12)

が満たされる．
この古典形式に対して量子化を行うには，Poisson括弧 (1.12)に対応して，演算子 q̂, p̂を考え，それ

に正準交換関係

[q̂m, p̂n] = iℏδmn, [q̂m, q̂n] = [p̂m, p̂n] = 0 (1.13)

を課せば良い．これを正準量子化という．このとき，ハミルトニアンも対応した演算子 Ĥになり，系を
記述する状態ベクトル |ψ(t)⟩の時間発展演算子の役割を果たす．したがって，|ψ(t)⟩と Ĥ は

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ(p̂, q̂)|ψ(t)⟩ (1.14)

を満たす．
演算子 q̂, p̂は抽象的な演算子という概念ではあるが，具体的には行列として考えることができる．そ

の際，|q⟩, |p⟩などはそのベクトル空間の基底ベクトルとして捉えることができる．多くの場合，q̂を対
角化するような基底が用いられ，それを q-表示と呼ぶ．そのとき，q̂は

q̂m|q⟩ = qm|q⟩ (1.15)

を満たす．ここでベクトル |q⟩は普通

⟨q|q′⟩ =
N∏

m=1

δ(qm − q′m) (1.16)

のように規格化する．この q-表示において，p̂は qの微分のような役割をする．すなわち

p̂m|q⟩ = iℏ
∂

∂qm
|q⟩ (1.17)
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のようになる．これを正準交換関係 (1.13)から導出してみよう．p̂mはエルミートなので，p̂mからユニ
タリー演算子

Û(a) = exp

(
1

iℏ

N∑
m=1

amp̂m

)
(1.18)

を構成できる．ここで amはN 個の実数である．このとき，Baker-Hausdorffの公式

eÂB̂e−Â =

∞∑
n=0

1

n!
[Â, [Â, · · · [Â,︸ ︷︷ ︸

n 個

B̂] · · · ]] (1.19)

において，Â = −
∑

m a
mp̂m/iℏ, B̂ = q̂mとすると，[Â, B̂] = amとなるから，多重交換子は実数 amと

の交換子になって落ちるので，
Û(a)−1q̂mÛ(a) = q̂m + am (1.20)

が成り立つ．また p̂同士は交換するので明らかに

Û(a)Û(b) = Û(a+ b) (1.21)

も成り立つ．
ところで，それぞれの q̂mは可換であるから，同時に対角化できる．そこで，q̂mの同次固有状態のう

ちの 1つを |ψ0⟩とし，その固有値を qm0 とする．すなわち，

q̂m|ψ0⟩ = qm0 |ψ0⟩ (1.22)

である．このとき，Û(q − q0)|ψ0⟩ ∝ |q⟩であることが示せる．

q̂mÛ(q − q0)|ψ0⟩ = Û(q − q0)Û(q − q0)
−1q̂mÛ(q − q0)|ψ0⟩

= Û(q − q0)(q̂
m + qm − qm0 )|ψ0⟩

= qmÛ(q − q0)|ψ0⟩. (1.23)

そこで簡単に
Û(q − q0)|ψ0⟩ = |q⟩ (1.24)

ととる．
運動量演算子 p̂mが |q⟩にどのように作用するかを調べるために，Û(a)を |q⟩に作用させてみると，

Û(a)|q⟩ = Û(a)Û(q − q0)|ψ0⟩
= Û(a+ q − q0)|ψ0⟩ = |a+ q⟩ (1.25)

となる．それで aを微小量 am = ϵmとおけば，上式の両辺を ϵの 1次までで(
1 +

1

iℏ
ϵmp̂m

)
|q⟩ =

(
1 + ϵm

∂

∂qm

)
|q⟩ (1.26)

と展開できる．よって ϵの 1次の係数を見れば

p̂m|q⟩ = iℏ
∂

∂qm
|q⟩ (1.27)

がわかる．このようにして (1.17)が得られる．
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状態ベクトル |ψ(t)⟩も非常に抽象的な概念なので，初等量子力学ではもっぱら，波動関数 ψ(q, t)とい
う概念が用いられる．これは状態ベクトル |ψ(t)⟩の q-表示への射影

ψ(q, t) = ⟨q|ψ(t)⟩ (1.28)

である．波動関数ψ(q, t)の時間発展は，(1.14)に左から ⟨q|を掛けることでわかる．その際，⟨q|への演算
子の作用は，通常の演算子 q̂のエルミート共役のように作用することに注意する．その結果，Schrödinger
方程式

iℏ
∂

∂t
ψ(q, t) = H

(
−iℏ ∂

∂q
, q

)
ψ(q, t) (1.29)

が得られる．以上が Schrödinger描像による量子力学の概要である．
(1.2)の処方でハミルトニアンをつくるとき，pと qの積の形が現れるときは注意が必要である．量子

力学では p̂と q̂は交換しないので，積の順序を明確にしなければならない．積の順序については，第 2

章で再び議論する．

1.2 Heisenberg描像

次にHeisenberg描像での量子力学を見ていこう．Schrödinger描像では，力学変数 q̂, p̂は時間に依存
せず，状態ベクトルが時間に依存していた．Heisenberg描像では，今度は状態ベクトルは時間に依存せ
ず，力学変数が時間に依存する．そのため，力学変数を q̂m(t), p̂m(t)とし，状態ベクトルを単に |ϕ⟩と書
こう．この 2つの描像は，同等な量子力学を構成するので，ユニタリー変換で結びついている．一般に
演算子のユニタリー変換は，交換関係 (1.13)を保存するからである．したがって，Schrödinger描像と
Heisenberg描像との間には，次のような関係がある．{

q̂m(t) = Û †(t)q̂mÛ(t),

p̂m(t) = Û †(t)p̂mÛ(t),
(1.30)

|ϕ⟩ = Û †(t)|ψ(t)⟩. (1.31)

ただし，Û(t)は時間に依存するユニタリー演算子であり，

Û(t)Û †(t) = Û †(t)Û(t) = 1 (1.32)

を満たす．
(1.31)を変形すると，

Û(t)|ϕ⟩ = |ψ(t)⟩ (1.33)

が得られるが，これを Schrödinger方程式 (1.14)に代入すると，形式的に

iℏ
d

dt
Û(t) = Ĥ(q̂, p̂)Û(t) (1.34)

と書ける．ここで偏微分は Û(t)が時間にしかよらないことから全微分に直した．Heisenberg描像での
一般の物理量

F̂ (t) = Û †(t)F (q̂, p̂)Û(t) (1.35)
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を考えよう．両辺を微分して (1.34)を使えば

d

dt
F̂ (t) =

(
d

dt
Û †(t)

)
F (q̂, p̂)Û(t) + Û †(t)F (q̂, p̂)

(
d

dt
U(t)

)
= − 1

iℏ
Û †(t)Ĥ(q̂, p̂)Û(t)F̂ (t) +

1

iℏ
F̂ (t)Û †(t)Ĥ(q̂, p̂)Û(t)

= − 1

iℏ
Ĥ(q̂, p̂)F̂ (t) +

1

iℏ
F̂ (t)Ĥ(q̂, p̂) =

1

iℏ
[F̂ (t), Ĥ(q̂, p̂)] (1.36)

を得る．ここでハミルトニアンがどちらの描像で見ても同じことを使った．よって

iℏ
d

dt
F̂ (t) = [F̂ (t), Ĥ(q̂, p̂)] (1.37)

となる．実際 F̂ (t)としてハミルトニアン Ĥ(t)を考えれば，(1.37)の右辺はゼロとなるので，ハミルト
ニアンはあらわに時間 tを含まない限り時間に依存しない．したがって (1.34)の形式解は

Û(t) = e−iĤt/ℏ (1.38)

と書ける．一般には Û = e−iĤ(t−t0)/ℏとなるが，ここでは t0 = 0ととった．
Heisenberg演算子 q̂(t)を対角化する表示を考える．

q̂(t)|q, t⟩ = q(t)|q, t⟩. (1.39)

ここで |q, t⟩は時間とともに変化する座標系で，|q, 0⟩ = |q⟩となっている．このとき

|q, t⟩ = U †(t)|q⟩ (1.40)

と定義されている．(1.28)で定義した Schrödingerの波動関数は

ψ(q, t) = ⟨q|ψ(t)⟩ = ⟨q, t|ψ⟩ (1.41)

で与えられる．これはやはり，Heisenbergの状態ベクトル |ψ⟩の動く座標系 |q, t⟩への射影と見なすこと
ができる．
最後に，(1.31)を使えば，異なった時刻の Schrödinger描像での状態を次のようにユニタリー演算子

で関係付けることができる．すなわち

|ψ⟩ = Û †(t)|ψ(t)⟩ = Û(t′)|ψ(t′)⟩ (1.42)

において中辺と右辺を見れば

|ψ(t)⟩ = Û(t, t′)|ψ(t′)⟩, (1.43)

Û(t, t′) = Û(t)Û †(t′) = e−iĤ(t−t′)/ℏ (1.44)

となっている．このユニタリー演算子を時間推進演算子と呼ぶ．
このことから，q-表示での遷移確率振幅 (時刻 t0において q0にあった粒子が時刻 tで q(t)に見出され

る確率振幅)は，(1.39)で導入した |q, t⟩を用いると

⟨q, t|q0, t0⟩ (1.45)

と表される．
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1.3 相互作用表示

粒子の散乱や，状態の遷移などの計算では，相互作用描像と呼ばれる表示が便利である．多くの場合，
始状態と終状態では粒子は自由粒子のように振舞っており，相互作用を除いた自由ハミルトニアンの固
有状態となっている．そこで，系のハミルトニアンが

Ĥ = Ĥ0 + Ĥ1 (1.46)

と分けられるとしよう．ここで Ĥ0が自由ハミルトニアン，Ĥ1が相互作用ハミルトニアンである．
相互作用描像は，Ĥ0で作られるユニタリー演算子

Û0(t) = e−iĤ0t/ℏ (1.47)

で，Schrödinger描像とつながっている．そこで，この描像の状態と演算子に添え字 Iを付けて表すと{
q̂I(t) = Û †

0(t)q̂Û0(t),

p̂I(t) = Û †
0(t)p̂Û0(t),

(1.48)

|ψI(t)⟩ = Û †
0(t)|ψ(t)⟩ (1.49)

となる．相互作用描像では，演算子も状態ベクトルも時間と共に変化する．
相互作用描像での状態ベクトルに関する運動方程式は，状態ベクトルの Schrödinger方程式 (1.14)より

iℏ
∂

∂t
|ψ(t)⟩ = Ĥ0|ψ(t)⟩+ Ĥ1|ψ(t)⟩ (1.50)

となる．左からユニタリー演算子 (1.47)のエルミート共役をかけると，これは Ĥ0と可換なことに注意
して

iℏÛ †
0(t)

∂

∂t
|ψ(t)⟩ = Ĥ0Û

†
0(t)|ψ(t)⟩+ Û †

0Ĥ1|ψ(t)⟩ (1.51)

である．一方，(1.49)の両辺を時間微分すると

iℏ
∂

∂t
|ψI(t)⟩ = iℏ

∂

∂t

(
Û †
0(t)|ψ(t)⟩

)
= iℏ

∂

∂t

(
eiĤ0t/ℏ|ψ(t)⟩

)
= −Ĥ0Û

†
0 |ψ(t)⟩+ iℏÛ †

0(t)
∂

∂t
|ψ(t)⟩ (1.52)

となるので，

iℏ
∂

∂t
|ψI(t)⟩ = Ĥ1(t)|ψI(t)⟩, (1.53)

Ĥ1(t) = Û †
0(t)Ĥ1Û0(t) (1.54)

が得られる．またこの描像での任意の演算子

F̂I(t) = Û †
0(t)F (q̂, p̂)Û0(t) (1.55)

は，(1.37)の導出と同様にして

iℏ
∂

∂t
F̂I(t) = [F̂I(t), Ĥ0(t)], (1.56)

Ĥ0(t) = Û †
0(t)Ĥ0Û0(t) = Ĥ0 (1.57)
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を満たす．また，このとき，F̂Iとして Ĥ0(t)を (1.56)に代入してみればわかるように Ĥ0の時間依存性は
ない．これらの式を Schrödinger描像やHeisenberg描像の場合と比較してみると，自由粒子の伝播部分
は (1.56)で表されるように演算子の変化で取り入れられ，相互作用による変化の部分のみが Schrödinger

描像の場合と同じく状態ベクトルの変化として表される．つまり，|ψI⟩が相互作用の変化部分を表し，F̂I

が自由粒子の変化部分を表す．これが，この量子力学系が相互作用描像と呼ばれる所以である．
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第2章 経路積分

量子力学における経路積分は，Feynmanにより見いだされた．それは配位空間における経路積分で
あったが，この章では演算子形式の量子力学との対応を見るために，まず位相空間における経路積分を
導出する．次に，ハミルトニアンの形を仮定することで位相空間における運動量積分を実行し，配位空
間の経路積分を求める．

2.1 位相空間における経路積分

Schrödingerの波動関数がある時刻 t′でわかっているとき，時刻 tでの波動関数は (1.42)より

|ψ(t)⟩ = Û(t, t′)|ψ(t′)⟩

=

∫
dq′Û(t, t′)|q′⟩⟨q′|ψ(t′)⟩ (2.1)

である．これに左から ⟨q|をかけて

⟨q|ψ(t)⟩ =
∫

dq′⟨q|Û(t, t′)|q′⟩⟨q′|ψ(t′)⟩ (2.2)

とすれば，形式的に

ψ(q, t) =

∫
dq′K(q, t; q′, t′)ψ(q′, t′) (2.3)

と書くことができる．このK を Feynman核という．結局これは推進演算子の行列要素

K(q, t; q′, t′) = ⟨q|Û(t, t′)|q′⟩ (2.4)

を意味しているに過ぎない．
Feynman核がわかれば，あらゆる物理量が計算できるので，これは Schrödinger方程式を解くことと

同等である．したがって，演算子形式で Schrödinger方程式を解くように，Feynman核を経路積分で書
くことを考える．
(1.39)で導入した動く座標を使えば，(2.4)と (1.40)から

K(q, t; q′, t′) = ⟨q, t|q′, t′⟩ (2.5)

と書けることがわかる．
時間間隔 t− t′をN 等分し，k番目の時刻を tkとすると，最初の時刻が t′，最後の時刻が tなので tk = t′ + ϵk,

ϵ =
t− t′

N

(2.6)

という関係になる．そして時刻 tk の座標を単に qk と書くと，qk を順次決定することで，状態の遷移
|q′, t′⟩ → |q, t⟩の経路を与えることになる．
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q

t
t0 = t′ t1 t2 t3 tN−1 tN = t

q0 = q′

q1

q2

q3

qN−1

qN = q

図 2.1: q′ → qの経路

q-表示の各時刻における基底ベクトルの完全性∫
dqk|qk, tk⟩⟨qk, tk| = 1 (2.7)

を (2.5)に次々挟んでいくと，Feynman核は

⟨q, t|q′, t′⟩ = lim
N→∞

∫
· · ·
∫ N−1∏

k=1

(dqk⟨qk+1, tk+1|qk, tk⟩)⟨q1, t1|q0, t0⟩ (2.8)

のように (N − 1)重積分のN → ∞極限になる．ただし，t0 = t′, q0 = q′, tN = t, qN = qと定義する．
次に，微小時間の核

⟨qk+1, tk+1|qk, tk⟩ = ⟨qk+1|e−iϵĤ/ℏ|qk⟩
∼= ⟨qk+1|(1− iϵĤ(p̂, q̂)/ℏ)|qk⟩ (2.9)

を運動量積分の形で表そう．まずは簡単のために，Ĥの中の p̂が常に q̂の左側にある場合を考えると，q̂
は (1.15)によって演算子から数 qkに置き換えることができる．
その後，運動量の完全性の式を用いる．q-表示と p-表示は Fourier変換

|p⟩ =
∫

dqeipq/ℏ|q⟩, (2.10)

|q⟩ = 1

2πℏ

∫
dpe−ipq/ℏ|p⟩ (2.11)

で結びついているので，この定義では，|pk⟩の完全性は

1

2πℏ

∫
dpk|pk⟩⟨pk| = 1 (2.12)

と表される．これでつじつまが合うためには

⟨p|p′⟩ =
∏
m

2πℏδ(pm − p′m) (2.13)
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と規格化されていなければならない．さらに，これらの定義を使えば

⟨q|p⟩ = ⟨q|
∫

dq′eipq
′/ℏ|q′⟩

=

∫
dq′eipq

′/ℏδ(q − q′) = eipq/ℏ (2.14)

となることもわかる．結局 (2.9)は

⟨qk+1, tk+1|qk, tk⟩ = ⟨qk+1|e−iϵĤ(p̂,q̂)|qk⟩

=

∫
dpk
2πℏ

⟨qk+1|pk⟩⟨pk|e−iϵĤ(p̂,q̂)|qk⟩

=

∫
dpk
2πℏ

⟨qk+1|pk⟩e−iϵĤ(pk,qk)⟨pk|qk⟩

=

∫
dpk
2πℏ

eipkqk+1/ℏe−iϵĤ(pk,qk)/ℏe−iϵpkqk/ℏ

=

∫
dpk
2πℏ

exp
[
i{pk(qk+1 − qk)− ϵĤ(pk, qk)}/ℏ

]
(2.15)

と書き表せる．Ĥの中でもし p̂が q̂の右にあれば，順番が 1つずれるだけなので，上式でHをH(pk, qk+1)

と変更すれば良い．一般に (2.9)は ⟨qk+1, tk+1|qk, tk⟩ =
∫

dpk
2πℏ

exp [iA(pk, qk+1, qk)/ℏ] ,

A(pk, qk+1, qk) = pk(qk+1 − qk)− ϵHk

(2.16)

と書け，Hkは数変数 pk, qk+1, qkの関数

Hk = H(pk, qk+1, qk) (2.17)

となる．Ĥ の中の演算子 p̂や q̂の順序が与えられると (2.17)の構造が定まる．演算子の並び方が複雑に
なると，まず交換関係 (1.13)を用いて Ĥ を適当に書き変えてから上記の手続きをすれば良いが，(2.8)

におけるN → ∞の極限操作がこの問題をややこしくする．この点に関する一般論には深入りせず，こ
こでは中点処方と呼ばれる便利な方法を紹介する．
中点処方では (2.17)のHkとして，Ĥ の中の p̂を pkに，q̂を (qk+1 + qk)/2に置き換えたもの

Hk = H

(
pk,

qk+1 + qk
2

)
(2.18)

を採る．この処方に対応する Ĥ の p̂と q̂の並び方はWeylの順序と呼ばれ，p̂と q̂が左右対称に並んで
いるものである．Weylの順序と中点処方の関係は次節で詳しく述べることにする．任意の演算子順序は
交換関係を使えばWeylの順序の線形結合で書けるので，中点処方は十分に一般的なものである．
さて，(2.16)を (2.8)に代入すれば，以下の表式を得る．

⟨q, t|q′, t′⟩ = lim
N→∞

∫
· · ·
∫ N−1∏

k=1

(dqk ⟨qk+1, tk+1|qk, tk⟩︸ ︷︷ ︸∫ dpk
2πℏ exp[iA(pk,qk+1,qk)/ℏ]

) ⟨q1, t1|q0, t0⟩︸ ︷︷ ︸∫ dp0
2πℏ exp[iA(p0,q1,q0)/ℏ]

= lim
N→∞

N−1∏
i=1

∫
dqi

N−1∏
j=0

∫
dpj
2πℏ

exp

[
i

ℏ

N−1∑
k=0

A(pk, qk+1, qk)

]
(2.19)
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この極限をとった式をシンボリックに次のように書く．

K(q, t; q′, t′) ≡ ⟨q, t|q′, t′⟩ =
∫ q(t)=q

q(t′)=q′
DqDpeiA[p,q]/ℏ, (2.20)

A[p, q] =

∫ t

t′
dτ [p(τ)q̇(τ)−H(p(τ), q(τ))] (2.21)

これが位相空間における経路積分表示である．これはあくまで形式的に書いただけで，正確には (2.19)

が定義である．
関数 q(τ), p(τ), (t′ ≦ τ ≦ t)を決めることは，位相空間内の粒子の辿る経路を決めることに相当する．

これは作用Aが q, pの汎関数であることを意味し，経路積分 (2.20)は，位相空間内のあらゆる経路を足
し合わせることを意味している．そのため，経路積分は汎関数積分とも呼ばれる．

2.2 Weyl順序

この節では，演算子のWeyl順序の定義を紹介し，ハミルトニアン演算子のWeyl順序と，ハミルトニ
アンの中点処方が対応付けられることを証明する．
l個の p̂とm個の q̂の積が次に説明するような順序で並べられているとき，これらをWeyl化された

積と呼び (p̂l, q̂m)Wと書くことにする．
まず簡単な例を見よう．

(p̂, q̂3)W =
1

4
(q̂3p̂+ q̂2p̂q̂ + q̂p̂q̂2 + p̂q̂3),

(p̂2, q̂2)W =
1

6
(q̂2p̂2 + q̂p̂q̂p̂+ q̂p̂2q̂ + p̂q̂2p̂+ p̂q̂p̂q̂ + p̂2q̂2).

一般には

(αp̂+ βq̂)N =
∑
l,m

l+m=N

N !

l!m!
αlβm(p̂l, q̂m)W (2.22)

で定義される．すなわち，(2.23)の左辺を展開したときのαlβmの係数の l!m!/N !倍がWeyl積 (p̂l, q̂m)W

である．
一般のハミルトニアンは，Heisenbergの交換関係を使って演算子を適当に並び替えて

Ĥ(p̂, q̂) =
∑
l,m

hlm(p̂l, q̂m)W (2.23)

と書ける．これはハミルトニアンがエルミートである要請からもわかることである．エルミート共役を
とると演算子の順序が入れ替わるが，ハミルトニアンはエルミートだから，もとに戻らなくてはいけな
い．すなわち，p̂と q̂は上記の例のように対称な形になっていなければならないのである．そして実際
これが (2.18)のように中点処方のハミルトニアンになるためには，

⟨q|Ĥ(p̂, q̂)|q′⟩ =
∫

dp

2πℏ
eip(q−q′)/ℏ

∑
l,m

hlmp
l

(
q + q′

2

)m

(2.24)

でなければならない．これを理解するためには，まず (2.25)の左辺に |p⟩の完全系を挿入する．

⟨q|Ĥ(p̂, q̂)|q′⟩ =
∫

dp

2πℏ
⟨q|p⟩⟨p|Ĥ(p̂, q̂)|q′⟩

=

∫
dp

2πℏ
eipq/ℏ⟨p|Ĥ(p̂, q̂)|q′⟩. (2.25)
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中点処方ということはこのハミルトニアンを，

Ĥ(p̂, q̂) → H

(
p,
q + q′

2

)
=
∑
l,m

hlmp
l

(
q + q′

2

)m

(2.26)

と置き換えるということなので，∫
dp

2πℏ
eipq/ℏ⟨p|Ĥ(p̂, q̂)|q′⟩ →

∫
dp

2πℏ
eipq/ℏH

(
p,
q + q′

2

)
⟨p|q′⟩

=

∫
dp

2πℏ
eip(q−q′)/ℏ

∑
l,m

hlmp
l

(
q + q′

2

)m

(2.27)

となる．ゆえに，(2.25)の等号が成り立てば，ハミルトニアンがWeyl積になっている場合は中点処方
を使うことが正当化できる．
では (2.25)が成り立つことを示そう．そのために，(2.25)の両辺を変形する．

⟨q|Ĥ(p̂, q̂)|q′⟩ =
∫

dp

2πℏ
eip(q−q′)/ℏ

∑
l,m

hlmp
l

(
q + q′

2

)m

⇐⇒
∑
l,m

hlm⟨q|(p̂l, q̂m)W|q′⟩ =
∫

dp

2πℏ
eip(q−q′)/ℏ

∑
l,m

hlmp
l

(
q + q′

2

)m

. (2.28)

したがって各々の l,mに対して

⟨q|(p̂l, q̂m)W|q′⟩ =
∫

dp

2πℏ
eip(q−q′)/ℏpl

(
q + q′

2

)m

(2.29)

となることがわかる．これに (N !/l!m!)αlβmをかけて再び和をとれば，それは (2.23)の形になるので

⟨q|(αp̂+ βq̂)N |q′⟩ =
∫

dp

2πℏ
eip(q−q′)/ℏ

(
αp+ β

q + q′

2

)N

(2.30)

を得る．すなわち，(2.25)を証明するには (2.31)を証明すれば良い．
(2.31)を帰納法を用いて証明する．まず，N = 1のときの (2.31)の左辺は

⟨q|αp̂+ βq̂|q′⟩ =
(
−iℏα ∂

∂q
+ βq

)
δ(q − q′) (2.31)

となり，右辺は∫
dp

2πℏ
eip(q−q′)/ℏ

(
αp+ β

q + q′

2

)
=

∫
dp

2πℏ
αpeip(q−q′)/ℏ + β

q + q′

2

∫
dp

2πℏ
eip(q−q′)/ℏ

= −iℏα ∂

∂q

∫
dp

2πℏ
eip(q−q′)/ℏ + β

q + q′

2
δ(q − q′)

=

(
−iℏα ∂

∂q
+ βq

)
δ(q − q′) (2.32)

となるので，N = 1のときには成り立つ．
次に，N = nのとき (2.31)が成り立つと仮定し，N = n+ 1のときを考える．このとき左辺は

⟨q|(αp̂+ βq̂)n+1|q′⟩ =
(
−iℏα ∂

∂q
+ βq

)
⟨q|(αp̂+ βq̂)n|q′⟩

=

(
−iℏα ∂

∂q
+ βq

)∫
dp

2πℏ
eip(q−q′)/ℏ

(
αp+ β

q + q′

2

)n

=

∫
dp

2πℏ

(
αp+ β

q + q′

2
− iℏα

∂

∂q
+ β

q − q′

2

)(
αp+ β

q + q′

2

)n

(2.33)
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と計算される．ここで，最後の行で括弧内に qの微分がいるのは，Leibniz則で微分を分配した結果であ
る．さらに後ろの 2つの項について考えていく．まず微分の項は

−
∫

dp

2πℏ
eip(q−q′)/ℏiℏα

∂

∂q

(
αp+ β

q + q′

2

)n

= −
∫

dp

2πℏ
eip(q−q′)/ℏ iℏnαβ

2

(
αp+ β

q + q′

2

)n−1

(2.34)

である．次に β(q − q′)/2の項は∫
dp

2πℏ
eip(q−q′)/ℏβ

q − q′

2

(
αp+ β

q + q′

2

)n

=

∫
dp

2πℏ
β
q − q′

2
eip(q−q′)/ℏ

(
αp+ β

q + q′

2

)n

=

∫
dp

2πℏ

{
− iℏβ

2

∂

∂p
eip(q−q′)/ℏ

}(
αp+ β

q + q′

2

)n

=

∫
dp

2πℏ
eip(q−q′)/ℏ iℏβ

2

∂

∂p

(
αp+ β

q + q′

2

)n

=

∫
dp

2πℏ
eip(q−q′)/ℏ iℏnαβ

2

(
αp+ β

q + q′

2

)n−1

(2.35)

となる．ここで，2行目から 3行目に行くのに部分積分を行い，表面項は落とした．上の 2つの項の計
算から，これらの項は相殺することがわかる．ゆえに残りの項をまとめれば

⟨q|(αp̂+ βq̂)n+1|q′⟩ =
∫

dp

2πℏ
eip(q−q′)/ℏ

(
αp+ β

q + q′

2

)n+1

(2.36)

となる．よってN = n+1で成り立つことが示された．ゆえに，全てのN で (2.31)が成り立ち，(2.25)

も成り立つ．

2.3 配位空間における経路積分

2.1節では，演算子形式のハミルトニアンから出発して，位相空間における経路積分公式を導出した．
実際の物理の問題では，ハミルトニアンが

Ĥ =
1

2
p̂⊤W (q̂)p̂+ V (q̂) (2.37)

のような特別な形をしている場合が多い．ただし p̂, q̂は n成分をもったベクトルで，W は n×nの対称
行列とする．また，(2.38)の演算子積はWeyl積とする．特にW が q̂によらない定数行列の場合を標準
形と呼ぶ．(2.19)で求めた経路積分は 1自由度の場合の公式であるが，n自由度の場合への拡張は簡単
で次のようになる．

K(q, tF; q
′, tI) = lim

N→∞

N−1∏
i=1

∫
dqi

N−1∏
j=0

∫
dpj

(2πℏ)n
exp

[
i

ℏ

N−1∑
k=0

Ak(pk, qk+1, qk)

]
. (2.38)

ただし 
Ak = pk · (qk+1 − qk)− ϵHk(pk, qk),

Hk =
1

2
p⊤
kW (qk)pk + V (qk),

qk =
1

2
(qk+1 + qk)

(2.39)

である．ハミルトニアンが (2.38)のような場合は，(2.39)における運動量積分が実行できる．この節で
は運動量積分を実行し，Feynmanの経路積分，または配位空間の経路積分の表式を求めよう．
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(2.38)に現れるW の逆行列M(=W−1)は質量次元を持つので，これは質量行列と呼ぶべきものであ
る．これを使って変数変換

pk → pk +
1

ϵ
M(qk+1 − qk) (2.40)

を行うと，Akは (2.40)の pkを置き換えて

Ak =

[
pk +

1

ϵ
M(qk+1 − qk)

]
· (qk+1 − qk)

− ϵ

2

[
pk +

1

ϵ
M(qk+1 − qk)

]⊤
W (qk)

[
pk +

1

ϵ
M(qk+1 − qk)

]
− ϵV (qk)

=p⊤
k (qk+1 − qk) +

1

ϵ
(qk+1 − qk)

⊤M⊤(qk+1 − qk)−
ϵ

2
p⊤
kW (qk)pk

− 1

2ϵ
(qk+1 − qk)

⊤M⊤WM(qk+1 − qk)−
1

2
(qk+1 − qk)

⊤M⊤Wpk

− 1

2
p⊤
kWM(qk+1 − qk)− ϵV (qk) (2.41)

となる．ここで，WM = 1であり，W⊤ =W,M⊤ =M であることを用いれば

Ak = − ϵ
2
p⊤
kWpk +

1

2ϵ
(qk+1 − qk)

⊤M(qk+1 − qk)− ϵV (qk) (2.42)

となる．次に，Gaussの積分公式

n∏
i=1

∫
dpi exp

(
− i

ℏ
ϵ

2
p⊤Wp

)
=

(
2π

iϵ

)n/2

[detW ]−1/2 (2.43)

を用いて (2.39)の運動量積分を実行するのだが，その前にこの積分公式を証明する．
まず，対称行列W を対角化する直交行列を Sとすると

W →W ′ = S⊤WS =

w1

. . .

wn

 = (wiδij) (2.44)

となる．ここで添え字 iの和はとっていない．このときベクトル pは

p → p′ = S⊤p (2.45)

と変換する．よって積分変数 piがこの変換を受けるので，積分は p′iで行うことになる．そのために，こ
の変数変換に伴うヤコビアン

J =

∣∣∣∣∣∣∣∣∣∣∣

∂p1
∂p′1

. . .
∂p1
∂p′n

...
. . .

...
∂pn
∂p′1

. . .
∂pn
∂p′n

∣∣∣∣∣∣∣∣∣∣∣
(2.46)

を計算する必要がある．pの変換則から pi = Sijp
′
j であるので

∂pi
∂p′k

= Sij
∂p′j
∂p′k

= Sijδik = Sik (2.47)
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と計算でき，ヤコビアンは

J =

∣∣∣∣∣∣∣
S11 . . . S1n
...

. . .
...

Sn1 . . . Snn

∣∣∣∣∣∣∣ = |detS| = 1 (2.48)

となる．最後の等号は
1 = det I = det(S⊤S) = detS⊤ detS = (detS)2 (2.49)

より従う．よって p′⊤W ′p′ = p′iwiδijp
′
j = wip

′2
i であるから

n∏
i=1

∫
dpi exp

(
− i

ℏ
ϵ

2
p⊤Wp

)
=

n∏
i=1

∫
dp′i exp

− i

ℏ
ϵ

2

n∑
j=1

wjp
′2
j

 (2.50)

となる．ここで，この積分の収束性を保証するためには，固有値wjが微小な負の虚数部分を持っている
としなければならない．すなわち，正の微小量 δを用いて

wj → wj − iδ (2.51)

として，積分実行後に δ → 0とする．その結果，

n∏
i=1

lim
δ→0

√
2πℏ

iϵ(wi + iδ)
=

(
2πℏ
iϵ

)n/2 1√∏n
i=1wi

(2.52)

を得，さらに，行列式の巡回対称性より

n∏
i=1

wi = detW ′ = det(S⊤WS) = det(SS⊤W ) = detW (2.53)

となるので，
n∏

i=1

∫
dpi exp

(
− i

ℏ
ϵ

2
p⊤Wp

)
=

(
2πℏ
iϵ

)n/2

[detW ]−1/2 (2.54)

となる．
さて，この公式を (2.39)に用いれば

K(q, tF; q
′, tI) = lim

N→∞

n∏
i=1

N−1∏
j=1

∫
dqij

N−1∏
k=0

1

(2πℏ)n

(
2πℏ
iϵ

)n/2

[detW (qk)]
−1/2

× exp

[
i

ℏ

N−1∑
l=0

{
1

2ϵ
(ql+1 − ql)

⊤M(ql+1 − ql)− ϵV (ql)

}]
(2.55)

を得る．今度は，公式
detW = exp[Tr(logW )] (2.56)

を用いると

[detW (qk)]
−1/2 = exp

[
−1

2
Tr logW (qk)

]
= exp

[
−1

2
Tr logM−1(qk)

]
= exp

[
1

2
Tr logM(qk)

]
(2.57)
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と書けるから，結局

K(q, tF; q
′, tI) = lim

N→∞

n∏
i=1

N−1∏
j=1

∫
dqij

(
1

2πℏiϵ

)nN/2

exp

[
i

ℏ

N−1∑
k=0

Ak

]
, (2.58)

Ak =
1

2ϵ
(qk+1 − qk)

⊤M(qk+1 − qk)− ϵV (qk)−
iℏ
2
Tr logM(qk) (2.59)

となる．
(2.59)を，配位空間での経路積分または Feynmanの経路積分と呼び，シンボリックに

K(q, tF; q
′, tI) =

∫
· · ·
∫

Dq exp[iA(tF, tI)/ℏ],

A(tF, tI) =

∫ tF

tI

dt

[
1

2
q̇⊤(t)M q̇(t)− V (q(t))− iℏ

δ(0)

2
Tr logM(q(t))

] (2.60)

と書く．ただし，ϵ = (tF − tI)/N = T/N として

lim
N→∞

N

T
(qk+1 − qk) = q̇(t),

lim
N→∞

N−1∑
k=0

ϵ =

∫ tF

tI

dt,

lim
N→∞

1

ϵ
= lim

N→∞

N

T
= δ(0)

(2.61)

であると定義する．また，積分測度Dqは，

Dq = lim
N→∞

(
1

2πℏiϵ

)nN/2 N−1∏
k=1

n∏
i=1

dqik (2.62)

と定義した．(2.61)のAの中の最後の項は Lee-Yang項と呼ばれるもので，系の質量行列が座標 qに依
存するときには見落としてはならない．
これにより配位空間におけるFeynman核の経路積分表示が求まった．次章では，いよいよ経路積分の

手法をポテンシャル問題に応用し，演算子法でも同じポテンシャルを考え，両者の具体的な比較を行っ
てゆく．
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第3章 経路積分による二連井戸型ポテンシャルの
評価

ここでは，二連井戸型ポテンシャルの基底エネルギーを経路積分によって評価する．求めた結果を，次
章の演算子形式での結果と比較する．

3.1 二連井戸型ポテンシャル

WKB法を用いて，二連井戸型ポテンシャルの基底エネルギーを求める．具体的なポテンシャルの形は

V (q) =
1

g2
U(gq), (3.1)

U(x) =
ω2

8a2
(x2 − a2)2 (3.2)

すなわち

V (q) =
ω2

8a2g2
(g2q2 − a2)2 (3.3)

である．これをグラフに表すと図 3.1のようになる．このポテンシャルは，例えば q = a/g近傍で

O

V (q)

qa/g−a/g

a2ω2

8g2

図 3.1: 二連井戸型ポテンシャル

V (q) ∼=
1

2
ω2

(
q − a

g

)2

(3.4)

のように振舞う．したがって，g → 0の極限で 2つのポテンシャル間の山が無限に高くなり，2つの独立
な調和振動子に分離して，エネルギーは縮退する．gをゆっくり大きくすれば，山の間でトンネル効果
が起きて縮退は解ける．この縮退が解けたことによる基底エネルギーの調和振動子からのずれを，経路
積分を使って定量的に求める．
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3.2 経路積分と分配関数

経路積分で基底エネルギーE0を求めるには，まず分配関数Z(β)との対応を見ることである．分配関
数の定義は

Z(β) = e−W (β) =
∑
n

e−βEn (3.5)

=
∑
n

⟨ψn|e−βĤ |ψn⟩ = Tr(e−βĤ) (3.6)

であり，そのとき
Ĥ|ψn⟩ = En|ψn⟩ (3.7)

である．それで，Z(β)を使えば，基底エネルギーは次のように計算できる．

E0 = lim
β→∞

1

β
W (β). (3.8)

証明:

W (β) = − log

(∑
n

e−βEn

)
= − log

e−βE0 +
∑
n ̸=0

e−βEn

 (3.9)

と書けるので，

lim
β→∞

1

β
W (β) = − lim

β→∞

1

β
log

e−βE0 +
∑
n̸=0

e−βEn


= E0 − lim

β→∞

1

β
log

1 +
∑
n̸=0

e−β(En−E0)


= E0 (3.10)

である．ここで n ̸= 0のときEn > E0であることを使った．(証明終)

よってE0は (3.8)で計算できる．次に，(3.6)を経路積分表示に書き換えよう．

Z(β) =
∑
n

⟨ψn|e−βĤ |ψn⟩

=
∑
n

∫
dq0⟨ψn|q0⟩⟨q0|e−βĤ |ψn⟩

=
∑
n

∫
dq0⟨q0|e−βĤ |ψn⟩⟨ψn|q0⟩

=

∫
dq0⟨q0|e−βĤ |q0⟩

=

∫
dq0⟨q0|e−iĤ(−iβℏ)/ℏeiĤ·0/ℏ|q0⟩

=

∫
dq0⟨q0,−iβℏ|q0, 0⟩ =

∫
dq0K(q0,−iβℏ; q0, 0). (3.11)

これは，周期的境界条件 qI = qF = q0を課した場合の Feynman核である．したがって，分配関数は経
路積分で書ける．

Z(β) =

∫
DqeiS[q]/ℏ. (3.12)
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ここで q0の積分 dq0はDqに含めた．そのとき作用は

S[q] =

∫ −iβℏ

0
dtL =

∫ −iβℏ

0
dt

{
1

2
q̇2 − V (q)

}
(3.13)

である．さらに，虚時間 τ = itを導入すると

S = i

∫ βℏ

0
dτ

{
1

2
q̇2 + V (q)

}
(3.14)

となる．このとき，q̇ = dq/dτ の定義に置き換わっており，周期的境界条件 q(0) = q(βℏ)が付くことに
注意する．この作用を指数の肩に乗せて，分配関数は

Z(β) =

∫
Dq(τ) exp

[
−1

ℏ

∫ βℏ

0
dτ

(
q̇2

2
+ V (q)

)]
(3.15)

となり，x = gqとすると

Z(β) =

 ∏
τ∈[0,βℏ]

1

g

∫ Dx exp
[
− 1

g2ℏ

∫ βℏ

0
dτ

(
ẋ2

2
+ U(x)

)]
(3.16)

となる．ただし x(0) = x(βℏ)．定数
∏

τ∈[0,βℏ] g
−1は変数変換 q → xに伴うヤコビアンであり，連続無

限の積で今は g ≪ 1なので発散しているように見えるが，後に分母分子に現れる形式となり無視できる．
この経路積分をWKB法で求めるということは，ℏを十分小さいと見なすことである．すると，(3.16)

の積分で最も寄与が大きい経路は，指数の作用関数が最も小さい停留経路ということになる．そこで，
次節では (3.16)の積分に現れる作用関数の停留経路を求め，停留経路まわりの鞍点法を使って (3.16)を
計算していく．

3.3 停留経路とインスタントン

(3.16)に現れる作用の停留経路を求めるため，作用の変分を考え，それをゼロとおくことから始めよう．

δ

∫ βℏ

0
dτ

(
ẋ2

2
+ U(x)

)
= 0. (3.17)

すると，Newton方程式に似た，以下の方程式が導かれる．

−ẍ+
∂U

∂x
= 0. (3.18)

停留経路はこの方程式の解である．この微分方程式は，−Uなるポテンシャル中を運動する粒子のNewton

方程式と同じ形をしている．よって (3.18)の解は，図 3.2のような逆さにしたポテンシャル中の粒子の
運動と解釈して求めることができる．
まず，方程式から，

x(τ) = ±a (3.19)

が解であることは明らかである．これは粒子が x = ±aの頂点に静止している解で，不安定に見えるが，
その安定性は作用関数が極小になっているかどうかで判断しなければならない．実際にこの解を作用へ
入れてみると，S[±a] = 0になることがわかり，U(x) ≧ 0かつ ẋ2 ≧より S ≧ 0であることが言えるの
で，解 (3.19)は確かに作用の停留径路になっている．
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O

−U(x)

x
a−a

図 3.2: U(x)を反転させたポテンシャル−U(x)

次に考えられる解は，一方の山頂 (x = ±a)から出発して反対の山頂 (x = ∓a)に到達する解である．
古典運動の類推で，最初の山頂で静止していたとすると，その全エネルギーはゼロである．したがって，
方程式 (3.18)のエネルギー積分の結果は次のようになる．

1

2
ẋ2 = U(x) =

ω2

8a2
(x2 − a2)2. (3.20)

最後にβ → ∞とするから，最初から時間間隔が無限大の解を考える．まず τ = 0で−aを出発し，τ → ∞
で aに到達する解は，常に ẋ > 0なので，(3.20)を

ẋ =
ω

2a
(x2 − a2) (3.21)

と変形して，変数分離を行うことで求まる．その結果は

x(τ) = a tanh
[ω
2
(τ − τ0)

]
(3.22)

となる．それで解のグラフは図 3.3のようになる．これは τ = τ0で折れ曲がりを持つキンク解であり，
ポテンシャル中の粒子運動で言えば，τ0は粒子が谷の底を通過する時刻である．そのため，今の境界条
件と照らし合わせれば，τ0 > 0である．
作用は ẋ2とポテンシャルの項から成るが，後に見るように ẋ2のみで書ける．ẋ2を計算すると

ẋ2 =
a2ω2

4 cosh4[ω(τ − τ0)/2]
(3.23)

となって，そのグラフは図 3.4に示してある．グラフからわかるように，作用への寄与はほとんど τ = τ0

近傍からのものである．したがってこの寄与をデルタ関数のようにほとんど瞬間的なものと見なし，こ
れをインスタントンができたと表現することにする．また，このような瞬間的な寄与をする解をインス
タントン解と呼ぶ．
次に aから−aへ向かう解を考えよう．この場合 (3.21)にマイナスが付き，

ẋ = − ω

2a
(x2 − a2) (3.24)

となる．これを解いて
x(τ) = −a tanh

[ω
2
(τ − τ0)

]
(3.25)
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τ

x

τ0

−a a

O

図 3.3: キンク解

O

ẋ2

ττ0

図 3.4: 作用関数への寄与
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を得る．これは (3.22)と折れ曲がりが逆の反キンク解であり，作用関数への寄与はキンク解と全く同じ
である．ゆえに，これを反インスタントンと呼ぶ．
これで作用の停留経路は求まったが，(3.16)の経路積分では x(0) = x(βℏ)の周期的境界条件を満たし

ていなければならない．今求めた停留経路は，x = ±aの経路を除いてこの境界条件を満たしていない．
境界条件を満たすためには，∓a→ ±aのような行きっぱなしの解ではなく，また元の山に戻る必要があ
る．そのためには，各々の解の積

x(τ) = ±a tanh
[ω
2
(τ − τ0)

]
tanh

[ω
2
(τ − τ0)

]
(3.26)

を考えれば良い．これはインスタントンと反インスタントンが対で現れることを意味する．この理由は
数式を見るよりもこの解の図 3.5を見れば明らかだろう．この解は方程式 (3.18)を厳密に満たすわけで

O

x(τ)

τ
インスタントン

反インスタントン

τ0 τ0

x(0) x(βℏ)

図 3.5: インスタントン反インスタントン対

はないが，それでも近似的には停留経路と呼んでも良い．それで，このような経路を準停留経路と呼ぼ
う．準停留経路は (3.26)だけではなく，もっとたくさんのインスタントン反インスタントン対を考えて
もよい．そこで，x(2n)0 を n個のインスタントンと反インスタントンの対からなる (3.18)の近似解とする．
停留経路ではないにしろ，これら準停留経路も足し上げておかねば近似の精度は悪くなると考えられる．
したがって，経路積分 (3.16)の計算では，準停留経路の寄与は全て取り入れて計算することにする．
n = 1の場合，すなわち，インスタントン反インスタントン対からの分配関数への寄与を詳しく調べ

る．図 3.6のような停留経路のまわりの展開を考えることになる．停留経路を図のように時間領域 Iの
部分と IIの部分に分け，経路積分が無限多重積分であることを使って Iと IIの積の形に書く．つまり，
τ ∈ [0, βℏ]の経路を，Iと IIの部分に分割して考えるということである．

Dx(τ) =
∏

τ∈[0,βℏ]

dx(τ) =

(∏
τ∈I

dx(τ)

)(∏
τ∈II

dx(τ)

)
. (3.27)
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O

x(τ)

τ
τ0 τ0

I II

図 3.6: 領域 Iと領域 IIへの分割

したがって，この場合の分配関数は経路積分表示で次のように書ける．

Z2 =

∫
Dx(τ) exp

[
−1

ℏ

∫ βℏ

0
dτL(τ)

]
=

∫ ∏
τ∈[0,βℏ]

dx(τ) exp

[
−1

ℏ

∫ βℏ

0
dτL(τ)

]

=

∫ ∏
τ∈I

dx(τ) exp

[
−1

ℏ

∫
I
dτL(τ)

] ∫ ∏
τ∈II

dx(τ) exp

[
−1

ℏ

∫
II
dτL(τ)

]
. (3.28)

ただし

[0, βℏ] = I + II, L(τ) =
1

g2

(
ẋ2

2
+ U(x)

)
(3.29)

である．次に，Iと IIのそれぞれにインスタントンがない場合の経路積分をかけて同じもので割ると

Z2 =

∫
(1)

∏
τ∈I

dx(τ) exp

[
−1

ℏ

∫
I
dτL(τ)

] ∫
(1)

∏
τ∈II

dx(τ) exp

[
−1

ℏ

∫
II
dτL(τ)

]

×

∫
(0)

∏
τ∈I

dx(τ) exp

[
−1

ℏ

∫
I
dτL(τ)

] ∫
(0)

∏
τ∈II

dx(τ) exp

[
−1

ℏ

∫
II
dτL(τ)

]
∫
(0)

∏
τ∈[0,βℏ]

dx(τ) exp

[
−1

ℏ

∫ βℏ

0
dτL(τ)

]

=

{∫
(1)

∏
τ∈I

dx(τ) exp

[
−1

ℏ

∫
I
dτL(τ)

] ∫
(0)

∏
τ∈II

dx(τ) exp

[
−1

ℏ

∫
II
dτL(τ)

]}

×

{∫
(0)

∏
τ∈I

dx(τ) exp

[
−1

ℏ

∫
I
dτL(τ)

] ∫
(1)

∏
τ∈II

dx(τ) exp

[
−1

ℏ

∫
II
dτL(τ)

]}

×


∫
(0)

∏
τ∈[0,βℏ]

dx(τ) exp

[
−1

ℏ

∫ βℏ

0
dτL(τ)

]
−1

(3.30)
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となる．これらの経路積分の右下の数字 (1)と (0)は，インスタントンがある停留経路 (3.22)，(3.25)ま
わりの経路積分，(反)インスタントンのない停留経路 (3.19)まわりの経路積分の意味である．この式を
見ると，第 1因子はインスタントン 1個の分配関数Z1，第 2因子は反インスタントンの分配関数Z1，第
3因子はゼロインスタントンの分配関数Z0である．また，反インスタントンとインスタントンの作用へ
の寄与は同じであり，実際上 Z1 = Z1として良い．こうしてインスタントン反インスタントン対の分配
関数 Z2は，1個のインスタントンの分配関数 Z1と，ゼロインスタントンの分配関数 Z0の経路積分に
書き換えられる．だが，Z1と Z1の寄与を等しくおくと，τ0 < τ0の時間順序を区別できない．さらに，
後に τ0は積分として足し上げるので，τ0 < τ0を区別せずに足し上げることになってしまう．そうする
と明らかに数えすぎになってしまうので，その入れ換えの総数 2!で割っておく必要がある．この議論に
より，

Z2 →
1

2!

Z2
1

Z0
=

1

2!

Z2
1

Z2
0

Z0 =
1

2!
A2Z0, (3.31)

A =
Z1

Z0
=

∫
(1)

Dx(τ) exp
[
−1

ℏ

∫ βℏ

0
dτL(τ)

]
∫
(0)

Dx(τ) exp
[
−1

ℏ

∫ βℏ

0
dτL(τ)

] (3.32)

としなければならない．
上の議論を n個の対の場合に拡張すれば，容易に次式になることがわかる．

Z2n =
1

(2n)!
A2nZ0. (3.33)

したがって分配関数は

Z(β) =
∞∑
n=0

Z2n =
∞∑
n=0

1

(2n)!
A2nZ0 = Z0 coshA (3.34)

で与えられる．
Z0は停留経路 x = ±aまわりに展開して求めた分配関数であるから，調和振動子の分配関数で近似で

きる．したがって

Z0 =
∞∑

m=0

exp

[
−β
(
m+

1

2

)
ℏω
]

(3.35)

となる．すると，求めたい基底エネルギーは (3.8)より

E0 = lim
β→∞

1

β
W (β)

= lim
β→∞

1

β
(− logZ0 − log coshA)

= − lim
β→∞

1

β
logZ0 − lim

β→∞

1

β
log coshA

=
ℏω
2

− lim
β→∞

1

β
log

eA + e−A

2

=
ℏω
2

− lim
β→∞

1

β
A− lim

β→∞

1

β
log(1 + e−2A) + lim

β→∞

1

β
log 2 (3.36)

と計算される．Aの定義 (3.32)より，A > 0であるから，0 < e−2A < 1．よって

lim
β→∞

1

β
log(1 + e−2A) = 0 (3.37)
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となる．ゆえに

E0 =
ℏω
2

− lim
β→∞

1

β
A ≡ ℏω

2
+ ϵ (3.38)

となって，基底エネルギーE0は調和振動子からのずれ

ϵ = − lim
β→∞

1

β
A (3.39)

を計算すれば求まることになる．

3.4 Aの計算

(3.32)で定義されたAを再び書くと，

A =
Z1

Z0
=

∫
(1)

Dx exp
[
− 1

g2ℏ

∫ βℏ

0
dτ

(
1

2
ẋ2 + U(x)

)]
∫
(0)

Dx exp
[
− 1

g2ℏ

∫ βℏ

0
dτ

(
1

2
ẋ2 + U(x)

)] (3.40)

である．分子の経路積分を実行するのに

x(τ) = x0(τ − τ0) + gξ(τ − τ0) (3.41)

とおき，gの冪で展開する．ただし x0(τ − τ0)は停留経路 (3.22)を改めて書き直したものであり，とく
に x0(τ)は，(3.22)で τ0 = 0としたものを表すとする．分母は，ゼロインスタントンの経路積分である
から，

x(τ) = a+ gξ(τ) (3.42)

とおいて，gで展開する．1-インスタントンの計算のために，U(x)を x0まわりで展開すると

U(x) = U(x0) + U ′(x0)gξ +
1

2
U ′′(x0)g

2ξ2 (3.43)

となる．このとき 1-インスタントンについては

1

2
ẋ2 + U(x) =

1

2
(ẋ0 + gξ̇)2 + U(x0) + U ′(x0)gξ +

1

2
U ′′(x0)g

2ξ2

=
1

2
ẋ20 + U(x0) + gẋ0ξ̇ + gU ′(x0)ξ +

1

2
g2ξ2 +

1

2
g2U ′′(x0)ξ

2 (3.44)

であり，それで，

1

g2

∫ βℏ

0
dτ

(
1

2
ẋ20 + U(x0)

)
≡ S0, (3.45)

1

g2

∫ βℏ

0
dτ(gẋ0ξ̇ + gU ′(x0)ξ) =

1

g2

∫ βℏ

0
g(−ẍ0 + U ′(x0))ξ = 0 (3.46)

である．最初の式は停留作用 S0で，2番目の式の初めの等号は部分積分，最後の等号はEuler-Lagrange

方程式によるものである．(3.44)の残りの項は

1

g2

∫ βℏ

0
dτ

(
1

2
g2ξ2 +

1

2
g2U ′′(x0)ξ

2

)
=

∫ βℏ

0
dτ

1

2
(ξ̇2 + U0ξ

2)

=

∫ βℏ

0
dτ
ξ

2
(−∂2τ + U0)ξ (3.47)
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となる．ただし U0 ≡ U ′′(x0)とした．0-インスタントンでは

U(a) = 0, U ′(a) = 0, U ′′(a) = ω2 (3.48)

であるから
1

2
ẋ2 + U(x) =

1

2
g2ξ̇2 +

1

2
ω2ξ2 (3.49)

と計算される．よって 1-インスタントンの場合と同様に

1

g2

∫ βℏ

0
dτ

(
1

2
ẋ2 + U(x)

)
=

∫ βℏ

0
dτ

1

2
(ξ̇2 + ω2ξ2)

=

∫ βℏ

0
dτ
ξ

2
(−∂2τ + ω2)ξ (3.50)

となる．したがって (3.40)は

A = e−S0/ℏ

∫
Dξ exp

[
−1

ℏ

∫ βℏ

0
dτ
ξ

2
(−∂2τ + U0)ξ

]
∫

Dξ exp
[
−1

ℏ

∫ βℏ

0
dτ
ξ

2
(−∂2τ + ω2)ξ

] (3.51)

となる．(3.51)の経路積分は，例えば分子については次のような方程式の固有値 1が求まれば，2次形式
のGauss積分に帰着させて計算できる．

(−∂2τ + U0(τ))ψn(τ) = Enψn(τ) (3.52)

これはポテンシャル U0(τ)を伴った Schrödinger方程式である．具体的な関数形は，U ′′(x)に x0(τ)を
代入すれば求まり，

U0(τ) = U ′′(x0(τ)) =
ω2

2

(
3 tanh2

ωτ

2
− 1
)

(3.53)

となる．このポテンシャルを図 3.7に示しておく．しかし，方程式 (3.52)はゼロ固有値の解を持ってい

O

U0(τ)

τ

−ω
2

2

ω2

図 3.7: ポテンシャル U0(τ)

1ここに現れる En は最初に考えていたものとは異なる．この方程式は時間を空間と見立てた Schödinger方程式のような
形をしており，そのためここの E は本当のエネルギーではなく，エネルギーの次元も持っていない．
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るため，そのまま計算するには問題がある．そこで，ゼロ固有値の解を詳しく調べるため，そのような
解の存在の証明から始めよう．
古典経路 x0(τ)は (3.18)の解であるから

−ẍ0(τ) + U ′(x0(τ)) = 0 (3.54)

を満たす．これをさらに τ で微分すると

−...
x 0(τ) + U ′′(x0(τ))ẋ0(τ) = 0

⇐⇒ (−∂2τ + U0)ẋ0 = 0 (3.55)

となるので，
ψ0(τ) ∝ ẋ0(τ) (3.56)

ととれば，ψ0(τ)は固有値ゼロの解である．それで ψ0を規格化して∫
dτψ2

0(τ) = 1 (3.57)

を満たすものにとる．すなわち

ψ0(τ) =
ẋ0√∫
dτ ẋ20

=
q̇0√∫
dτ q̇20

(3.58)

である．ここで，(3.20)より

1

2
ẋ20 = U(x0) (3.59)

なので
1

2

∫ βℏ

0
dτ ẋ20 =

∫ βℏ

0
dτU(x0(τ)) (3.60)

となる．これを q0(τ)で表せば
1

2

∫ βℏ

0
dτ q̇20 =

∫ βℏ

0
dτV (q0) (3.61)

である．作用は

S0 =

∫ βℏ

0
dτ

(
q̇20
2

+ V (q0)

)
=

∫ βℏ

0
dτ q̇20 (3.62)

と書ける．以上よりゼロ固有値の解は

ψ0(τ) =
q̇0√
S0

(3.63)

となる．
次に，(3.52)の解 {ψn}を使って ξ(τ)を次のように展開する．

ξ(τ) =

∞∑
n=0

ξnψn(τ). (3.64)

これで，(3.51)の分子の経路積分の積分変数を ξ(τ)から ξnへ変換することができる．さらに，{ψn}は
正規直交 ∫

dτψn(τ)ψm(τ) = δnm (3.65)
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であるとすると，変換 (3.64)はユニタリー変換であるということができる．ξ(τ)を無限次元のベクトル
として，その大きさの 2乗は

||ξ(τ)||2 =
∫

dτξ(τ)ξ(τ)

=

∫
dτ
∑
n,m

ξnξmψn(τ)ψm(τ)

=
∑
n,m

ξnξmδnm

=
∑
n

ξnξn = ||ξn||2 (3.66)

となる．よって，変換 (3.64)はベクトルの大きさを変えないので，ユニタリー変換である．これより，
ξ(τ) → ξnの変数変換 (3.64)に伴うヤコビアンは 1であることがわかるので，積分測度 Dξは次のよう
に書ける．

Dξ =
∏

τ∈[0,βℏ]

dξ(τ) =

∞∏
n=0

dξn. (3.67)

この変換により ∫ βℏ

0
dτ
ξ

2
(−∂2τ + U0)ξ =

∫ βℏ

0
dτ

1

2

∑
n,m

ξnψn(−∂2τ + U0)ξmψm

=

∫ βℏ

0
dτ

1

2

∑
n,m

Emξnξmψnψm

=
1

2

∑
n,m

Emξnξmδnm =
1

2

∞∑
n=0

Enξ
2
n (3.68)

となるから，(3.51)の分子の経路積分は∫
Dξ exp

[
−1

ℏ

∫ βℏ

0

ξ

2
(−∂2τ + U0)ξ

]
=

∞∏
n=0

∫
dξn exp

[
− 1

2ℏ

∞∑
n=0

Enξ
2
n

]

=
∞∏
n=1

√
2πℏ
En

∫
dξ0 exp

[
−E0

2ℏ
ξ20

]

=

∞∏
n=1

√
2πℏ
En

∫
dξ0 (3.69)

となる．最後の等号では E0 = 0であることを使った．このように，ゼロ固有値の部分はGauss積分に
ならず，それどころか発散しているように見える．この意味を探るため，(3.41)及び (3.64)で定義され
る変換の式をもう一度書くと，

x(τ) = x0(τ − τ0) + gξ(τ − τ0)

= x0(τ − τ0) + g
∞∑
n=0

ψn(τ − τ0)ξn (3.70)

となっている．とくにゼロ固有値のモードについて，ψ0の具体的な形 (3.63)を使って分離すると

x(τ) = x0(τ − τ0) +
1√
S0
ẋ0(τ − τ0)ξ0 + g

∞∑
n=1

ψn(τ − τ0)ξn (3.71)
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となる．すると，初めの 2項は x0(τ − τ0 + ξ0/
√
S0)を展開して 1次までとったものと見なせる．この

とき，(3.45)から 1/
√
S0 ∼ O(g)に注意すれば，gが小さいとき

x(τ) = x0

(
τ − τ0 +

ξ0√
S0

)
+ g

∞∑
n=1

ψn

(
τ − τ0 +

ξ0√
S0

)
+O(g2) (3.72)

と書くことができる．ここで ψnの展開部分はO(g2)に吸収されている．これより，ξ0は τ0の変化に相
当すると結論できる．つまり，ξ0の積分は異なった時刻にできたインスタントンの足し上げの役割を果
たす．よって

dξ0 =
√
S0dτ0 (3.73)

とできるから
∞∏
n=1

√
2πℏ
En

∫
dξ0 =

∞∏
n=1

√
2πℏ
En

∫ βℏ

0
dτ0
√
S0

=
√
S0βℏ

∞∏
n=1

√
2πℏ
En

(3.74)

と計算される．つまり，ξ0の積分による発散は∫
dξ0 = lim

β→∞

√
S0βℏ (3.75)

と解釈できたわけである．
(3.51)の分母についても同様に固有値方程式を考えよう．

(−∂2τ + ω2)ψ0
n(τ) = E0

nψ
0
n(τ). (3.76)

これを使えば ∫
Dξ exp

[
−1

ℏ

∫ βℏ

0
dτ
ξ

2
(−∂2τ + ω2)ξ

]
=

∞∏
n=0

√
2πℏ
E0

n

(3.77)

を得る．以上から，Aは

A = e−S0/ℏ
√
S0βℏ

∏∞
n=1

√
2πℏ/En∏∞

n=0

√
2πℏ/E0

n

= e−S0/ℏβℏ
√

S0
2πℏ

(∏∞
n=0E

0
n∏∞

n=1En

)1/2

= βe−S0/ℏ
√
S0ℏ
2π

(
det(−∂2τ + ω2)

det′(−∂2τ + U0)

)1/2

(3.78)

となる．ここで，det′はゼロモードを除いた行列式を表す．こうして，エネルギーのずれ ϵは

ϵ = − lim
β→∞

1

β
A = −e−S0/ℏ

√
S0ℏ
2π

(
det Ĥ0

det′ Ĥ

)1/2

(3.79)

と書ける．ただし 
Ĥ = − ∂2

∂τ2
+ U0(τ),

Ĥ0 = − ∂2

∂τ2
+ ω2

(3.80)

である．
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3.5 行列式の比の計算

(3.79)の行列式の比を計算するために，次の行列式を考えよう．

∆(E) =
det(E − Ĥ)

det(E − Ĥ0)
=

∏∞
n=0(En − E)∏∞
n=0(E

0
n − E)

. (3.81)

これを Fredholm行列式という．これを用いると

− lim
E→0

∆(E)

E
= − lim

E→0

1

E
(E0 − E)

∏∞
n=1(En − E)∏∞
n=0(E

0
n − E)

= lim
E→0

∏∞
n=1(En − E)∏∞
n=0(E

0
n − E)

=

∏∞
n=1En∏∞
n=0E

0
n

=
det′ Ĥ

det Ĥ0

(3.82)

となるので， (
det Ĥ0

det′ Ĥ

)1/2

= lim
E→0

(
E

−∆(E)

)1/2

=

(
1

−∆′(0)

)1/2

(3.83)

によって (3.79)が計算できる．ここで，2番目の等号は微分の定義そのものであることに注意する．
それではまず， (

− ∂2

∂τ2
+ U0(τ)

)
ψ(τ) = Eψ(τ) (3.84)

なる波動方程式の 1次元の散乱問題を考えよう．U0(τ)は，τ → ±∞で ω2に近付くから，解も τ → ±∞
で e

±ikτ (k2 = E − ω2)に近付くはずである．そこで，次のような境界条件を見たす解を f±(τ, E)とし
よう．

lim
τ→±∞

[
f±(τ, E)e∓ikτ

]
= 1 (3.85)

次に，f±(τ, E)の τ の反対方向の漸近形を

lim
τ→∓∞

f±(τ, E) = e∓ikτA±(E) + e±ikτF±(E) (3.86)

とすると，
F+(E) = F−(E) = ∆(E) (3.87)

となることが示せる．
最初に，解の集合 {f+(τ, E), f−(τ, E

′)}のロンスキアン

W =

∣∣∣∣∣f+(τ, E) f−(τ, E
′)

f ′+(τ, E) f ′−(τ, E
′)

∣∣∣∣∣ = f+(τ, E)
∂

∂τ
f−(τ, E

′)− f−(τ, E
′)
∂

∂τ
f+(τ, E) (3.88)

を考える．これを τ で微分すると

∂W

∂τ
= f+(τ, E)

∂2f−(τ, E
′)

∂τ2
− f−(τ, E

′)
∂2f+(τ, E)

∂τ2
(3.89)

となる．それで波動方程式 (3.84)を使えば

∂W

∂τ
= (E − E′)f+(τ, E)f−(τ, E

′) (3.90)

31



を得る．したがってE = E′のとき
∂W

∂τ
= 0 (3.91)

となる．つまり，E = E′のときW は τ に依存しない．ゆえに，ロンスキアンには，τ のどの値の関数
形をも代入することができる．

1. τ → ∞のとき

f+(τ, E) → eikτ , (3.92)

f−(τ, E) → eikτA−(E) + e−ikτF−(E). (3.93)

よって
W = −2ikF−(E). (3.94)

2. τ → −∞のとき

f+(τ, E) → e−ikτA+(E) + eikτF+(E), (3.95)

f−(τ, E) → e−ikτ . (3.96)

よって
W = −2ikF+(E). (3.97)

以上 (3.94)及び (3.97)より
F+(E) = F−(E) ≡ F (E) (3.98)

を得る．これで (3.87)の前半が証明された．
次に，関数

G(τ, τ ′;E) =
if+(τ>, E)f−(τ<, E)

2kF (E)
(3.99)

を考えよう．ここで，記号 τ>, τ<は，次のように定義されている．

τ > τ ′のとき τ> = τ τ< = τ ′,

τ < τ ′のとき τ> = τ ′ τ< = τ.
(3.100)

この関数Gは，演算子 Ĥ − EのGreen関数になっている．
証明: Green関数の定義は(

− ∂2

∂τ2
+ U0(τ)− E

)
G(τ, τ ′;E) = δ(τ − τ ′) (3.101)

である．したがって，この関数の左辺が，デルタ関数の定義∫
dτδ(τ − τ ′) = 1 (3.102)∫

dτδ(τ − τ ′)f(τ) = f(τ ′) (3.103)

を満たすことを言えば良い．まず，(3.99)で定義されたGreen関数が，次のようにも書けることに注意
する．

G(τ, τ ′;E) =
i

2kF (E)

[
θ(τ − τ ′)f+(τ, E)f−(τ

′, E) + θ(τ ′ − τ)f+(τ
′, E)f−(τ, E)

]
(3.104)
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よって(
− ∂2

∂τ2
+ U0(τ)− E

)
G(τ, τ ′;E) =

i

2kF (E)

[(
− ∂2

∂τ2
+ U0(τ)− E

)(
θ(τ − τ ′)f+(τ, E)f−(τ

′, E)
)

+

(
− ∂2

∂τ2
+ U0(τ)− E

)(
θ(τ ′ − τ)f+(τ

′, E)f−(τ, E)
)]

(3.105)

となる．それぞれの項に微分を作用させ，階段関数の微分がデルタ関数になることを使えば(
− ∂2

∂τ2
+ U0(τ)− E

)
G(τ, τ ′;E) =

i

2kF

[
2δ(τ − τ ′)

{
f+(τ

′, E)
∂f−(τ, E)

∂τ
− f−(τ

′, E)
∂f+(τ, E)

∂τ

}
+

{
∂

∂τ
δ(τ − τ ′)

}{
f+(τ

′, E)f−(τ, E)− f+(τ, E)f−(τ
′, E)

}]
(3.106)

となる．さらに，この式の両辺を積分すれば∫
dτ

(
− ∂2

∂τ2
+ U0(τ)− E

)
G(τ, τ ′;E)

=
i

2kF

∫
dτ2δ(τ − τ ′)

{
f+(τ

′, E)
∂f−(τ, E)

∂τ
− f−(τ

′, E)
∂f+(τ, E)

∂τ

}
+

i

2kF

∫
dτ

{
∂

∂τ
δ(τ − τ ′)

}{
f+(τ

′, E)f−(τ, E)− f+(τ, E)f−(τ
′, E)

}
=

i

2kF

∫
dτδ(τ − τ ′)

{
f+(τ

′, E)
∂f−(τ, E)

∂τ
− f−(τ

′, E)
∂f+(τ, E)

∂τ

}
+

i

2kF

[
δ(τ − τ ′)

{
f+(τ

′, E)f−(τ, E)− f+(τ, E)f−(τ
′, E)

}]τ=∞
τ=−∞

=
i

2kF

{
f+(τ

′, E)
∂f−(τ

′, E)

∂τ ′
− f−(τ

′, E)
∂f+(τ

′, E)

∂τ ′

}
=

i

2kF
W

=
i

2kF
(−i2kF ) = 1 (3.107)

となる．ゆえに，(3.101)の左辺は (3.102)を満たす．
また，τ > τ ′, τ < τ ′のそれぞれで，(

− ∂2

∂τ2
+ U0(τ)− E

)
G(τ, τ ′, E) = 0 (3.108)

は波動方程式 (3.84)から満たされる．したがって，積分∫
dτf(τ)

(
− ∂2

∂τ2
+ U0(τ)− E

)
G(τ, τ ′;E) (3.109)

の寄与が τ = τ ′のみであることは明らかである．ゆえに，f(τ) → f(τ ′)とすることができて∫
dτf(τ)

(
− ∂2

∂τ2
+ U0(τ)− E

)
G(τ, τ ′;E) = f(τ ′)

∫
dτ

(
− ∂2

∂τ2
+ U0(τ)− E

)
G(τ, τ ′;E)

= f(τ ′) (3.110)

が得られる．これで (3.103)も満たされていることがわかった．以上より，(3.101)が成り立ち，G(τ, τ ′;E)

は演算子 Ĥ − EのGreen関数である．(証明終)
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量子力学の演算子形式を使うと

G(τ, τ ′;E) = ⟨τ | 1

Ĥ − E
|τ ′⟩ (3.111)

とも書ける．(3.81)で定義された Fredholm行列式の対数をとると

log∆(E) = log det(E − Ĥ)− log det(E − Ĥ0)

= Tr log(E − Ĥ)− Tr log(E − Ĥ0) (3.112)

となる．ここで，両辺をEで微分するために，次の式を証明しよう．

∂

∂x
Tr log(x−A) = Tr

1

x−A
(3.113)

ただしAは行列である．
証明:x−A = eB とおく．それでBを対角化する行列を Sとすると，Dをその対角化された行列とし

て，次式が書き下せる．
D ≡ S−1BS = S−1 log(x−A)S (3.114)

そのとき

S−1(x−A)S = S−1eBS

= S−1
∞∑
k=0

1

k!
BkS

=
∞∑
k=0

1

k!
(S−1BS)(S−1BS) · · · (S−1BS)︸ ︷︷ ︸

k 個

=
∞∑
k=0

1

k!
(S−1BS)k

=
∞∑
k=0

1

k!
Dk = eD (3.115)

であり，上式の対数をとると
D = log{S−1(x−A)S} (3.116)

である．(3.114)と (3.116)から

S−1 log(x−A)S = log{S−1(x−A)S} (3.117)

がわかるので，

Tr log(x−A) = Tr{S−1 log(x−A)S}
= Tr log{S−1(x−A)S} (3.118)

となる．定義から S−1(x−A)Sは対角行列なので，その対数は対角成分の対数である．よって微分はト
レースの対角成分ごとに行うことができて

∂

∂x
Tr log(x−A) = Tr{S−1(x−A)S}−1

= Tr{S−1(x−A)−1S}

= Tr
1

x−A
(3.119)
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となる．これで (3.113)が示された．(証明終)

この公式を (3.112)に適用すれば

∂

∂E
log∆(E) = Tr

1

E − Ĥ
− Tr

1

E − Ĥ0

= −
[
Tr

1

Ĥ − E
− Tr

1

Ĥ0 − E

]
= −

∫
dτ

(
⟨τ | 1

Ĥ − E
|τ⟩ − ⟨τ | 1

Ĥ0 − E
|τ⟩
)

= −
∫

dτ{G(τ, τ ;E)−G0(τ, τ ;E)} (3.120)

を得る．ただしG0(τ, τ
′;E)は(

− ∂2

∂τ2
+ ω2 − E

)
G0(τ, τ

′;E) = δ(τ − τ ′) (3.121)

で定義される．このGreen関数の式は調和振動子における Feynmanの境界条件に相当し，

G0(τ, τ
′;E) =

i

2k

[
θ(τ − τ ′)eik(τ−τ ′) + θ(τ ′ − τ)eik(τ

′−τ)
]

(3.122)

である．また，この自由場におけるロンスキアンW0[e
ikτ , e−ik′τ ]に関して，

W0 = −i(k + k′)ei(k−k′)τ , (3.123)

∂W0

∂τ
= (E − E′)ei(k−k′)τ (3.124)

も計算できる．このとき (3.120)の評価を考えよう．
Heavisideの階段関数が θ(0) = 1/2と定義されているとすると，それぞれのGreen関数の表式から

∂

∂E
log∆(E) = −

∫ ∞

−∞
dτ

(
if+(τ, E)f−(τ, E)

2kF (E)
− i

2k

)
= − lim

T→∞
lim

E′→E

i

2k

1

E − E′

∫ T

−T
dτ

(
E − E′

F (E)
f+(τ, E)f−(τ, E

′)− (E − E′)ei(k−k′)τ

)
= − lim

T→∞
lim

E′→E

i

2k

1

E − E′

∫ T

−T
dτ

(
1

F (E)

∂W

∂τ
− ∂W0

∂τ

)
= − lim

T→∞
lim

E′→E

i

2k

1

E − E′

[
1

F (E)
W [f+(τ, E), f−(τ, E

′)]−W0[e
ikτ , e−ik′τ ]

]T
−T

(3.125)

が得られる．これをさらに計算するため，ロンスキアンW の τ → ±∞の表式を求めると

W −−−→
τ→∞

i(k′ − k)A−(E
′)ei(k+k′)τ − i(k′ + k)F (E′)ei(k−k′)τ , (3.126)

W −−−−→
τ→−∞

−i(k′ − k)A+(E)e−i(k+k′)τ − i(k′ + k)F (E)ei(k−k′)τ (3.127)

となる．したがって，τ → ±∞に合わせて τ = ±T を代入して (3.126),(3.127)を用いることができる．
また，W0に関してはとくに極限の表式は必要ない．これらを (3.125)に代入して整理すると，

∂

∂E
log∆(E) = − lim

T→∞
lim

E′→E

i2

k + k′
1

2kF (E)
ei(k+k′)T {A−(E

′) +A+(E)}

− lim
T→∞

lim
E′→E

i2(k + k′)

2kF (E)
ei(k−k′)T F (E)− F (E′)

E − E′ (3.128)
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が得られる．このとき，計算の途中で，E − E′ = k2 − k′2を用いた．これでE′の極限を実行すると第
2項は F (E)の微分となり

∂

∂E
log∆(E) = lim

T→∞
e2ikT

A−(E) +A+(E)

4k2F (E)
+
F ′(E)

F (E)

= lim
T→∞

e2iT
√
E−ω2A−(E) +A+(E)

4k2F (E)
+

∂

∂E
logF (E) (3.129)

と計算できる．この式の両辺をE : ∞ → Eで積分する．そこで変数を被らないように ϵに置き換えて∫ E

∞
dϵ
∂

∂ϵ
log∆(ϵ) =

∫ E

∞
dϵ lim

T→∞
e2iT

√
ϵ−ω2A−(ϵ) +A+(ϵ)

4(ϵ− ω2)F (ϵ)
+

∫ E

∞
dϵ
∂

∂ϵ
logF (ϵ) (3.130)

とする．境界条件を考えると，E → ∞で f±は自由波になり，反射波はなくなるので

F (∞) = 1, (3.131)

A−(∞) = A+(∞) = 0 (3.132)

となることがわかる．また，定義式 (3.81)より

∆(∞) = lim
E→∞

∏
n(En − E)∏
n(E

0
n − E)

= lim
E→∞

∏
n(En/E − 1)∏
n(E

0
n/E − 1)

= 1 (3.133)

も計算できる．よって

log∆(E) =

∫ E

∞
dϵ lim

T→∞
e2iT

√
ϵ−ω2A−(ϵ) +A+(ϵ)

4(ϵ− ω2)F (ϵ)
+ logF (E) (3.134)

となる．右辺第 1項は，不定積分公式∫
dxea

√
x =

2ea
√
x(a

√
x− 1)

a2
(3.135)

を用いて部分積分すると∫ E

∞
dϵ lim

T→∞
e2iT

√
ϵ−ω2A−(ϵ) +A+(ϵ)

4(ϵ− ω2)F (ϵ)

= lim
T→∞

[
2e2iT

√
ϵ−ω2

(2iT
√
ϵ− ω2 − 1)

(2iT )2
A−(ϵ) +A+(ϵ)

4(ϵ− ω2)F (ϵ)

]E
∞

−
∫ E

∞
dϵ lim

T→∞

2e2iT
√
ϵ−ω2

(2iT
√
ϵ− ω2 − 1)

(2iT )2
∂

∂ϵ

{
A−(ϵ) +A+(ϵ)

4(ϵ− ω2)F (ϵ)

}
= lim

T→∞

2e2iT
√
E−ω2

(2iT
√
E − ω2 − 1)

(2iT )2
A−(E) +A+(E)

4(E − ω2)F (E)
= 0 (3.136)

となる．以上より
log∆(E) = logF (E) ⇐⇒ ∆(E) = F (E) (3.137)

が示された．これを後に使う．
波動方程式 (3.84)の解は，(3.22)の解 q0(τ)の微分で表される．これを見るため，

q0(τ) =
1

g
x0(τ) =

a

g
tanh

ωτ

2
(3.138)
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と書くと，その τ → ∞の漸近形は
a

g
tanh

ωτ

2
=
a

g

eωτ/2 − e−ωτ/2

eωτ/2 + e−ωτ/2
=
a

g

1− e−ωτ

1 + eωτ

−−−→
τ→∞

a

g
− 2a

g
e−ωτ (3.139)

となる．よってその微分は

q̇0(τ) −−−→
τ→∞

2aω

g
e−ωτ (3.140)

となる．一方，f+(τ, 0) −−−→
τ→∞

e−ωτ なので

f+(τ, 0) =
g

2aω
q̇0(τ) (3.141)

と選ぶことができる．f−(τ, 0)も同様に

q0(τ) −−−−→
τ→−∞

2a

g
eωτ − a

g
, (3.142)

q̇0(τ) −−−−→
τ→−∞

2aω

g
eωτ , (3.143)

f−(τ, 0) −−−−→
τ→−∞

eωτ (3.144)

となることがわかる．なので，結局
f−(τ, 0) =

g

2aω
q̇0(τ) (3.145)

ととれば良い．また，E = 0で波はポテンシャルを透過できないので，

A±(0) = 1 (3.146)

となるはずである．これで，f±(τ, 0)はその反対方向の漸近形をも満たしていることが確認できる．
次に，ロンスキアンW の満たす方程式 (3.90)をEで微分し，E = E′ = 0とおけば，

∂

∂E

∂W

∂τ

∣∣∣∣
E=E′=0

=
∂2

∂E∂τ
W [f+(τ, E), f−(τ, E

′)]

∣∣∣∣
E=E′=0

= f+(τ, 0)f−(τ, 0) =
g2

4a2ω2
q̇20(τ) (3.147)

が得られる．さらに，この式を τ ∈ [−∞,∞]で積分すると∫
dτ

∂2

∂E∂τ
W [f+(τ, E), f−(τ, E

′)]

∣∣∣∣
E=E′=0

=
g2

4a2ω2

∫
dτ q̇20(τ) (3.148)

となる．両辺を順番に計算していこう．まず左辺は，(3.125)を整理したのと同様に

(左辺) = lim
T→∞

∂

∂E

[
i(k′ − k)ei(k

′+k)T {A−(E
′) +A+(E)}

−i(k′ + k){ei(k′−k)TF (E′)− e−i(k−k′)TF (E)}
]∣∣∣

E=E′=0

= lim
T→∞

∂

∂E

[
i(iω − k)ei(k+iω)T {1 +A+(E)}+ i(iω + k)e−i(k−iω)TF (E)

]∣∣∣∣
E=0

= lim
T→∞

[
∂k

∂E
(−i)ei(k+iω)T {1 +A+(E)}+ i(iω − k)

∂

∂E
ei(k+iω)T {1 +A+(E)}

+
∂

∂E

{
i(iω + k)e−i(k−iω)T

}
F (E) + i(iω + k)e−i(k−iω)TF ′(E)

]∣∣∣∣
E=0

= lim
T→∞

[
−i
2iω

e−2ωT · 2 + i · 2iωF ′(0)

]
= −2ωF ′(0) (3.149)
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と計算される．次に右辺は，単に (3.62)を負の時間方向に並進させただけのものであるから，結局古典
作用 S0である．したがって

−2ωF ′(0) =
g2

4a2ω2
S0 ⇐⇒ F ′(0) = ∆′(0) = − g2

8a2ω3
S0 (3.150)

を得る．これより，欲しかった行列式の比が(
det Ĥ0

det′ Ĥ

)1/2

=
2aω

g

√
2ω

S0
(3.151)

と求まる．以上から，エネルギーのずれ (3.79)は

ϵ = −2aω

g

√
ℏω
π
e−S0/ℏ (3.152)

と与えられる．
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第4章 演算子形式による二連井戸型ポテンシャルの
評価

この章では，前章で導いた結果を，演算子形式，すなわち Schrödinger方程式を用いて導出すること
を目指す．そのことによって，Feynmanによる経路積分と，Schrödingerによる演算子形式とが等価で
あることを具体的に示す．問題設定や考えるポテンシャルは，もちろん前章と同様である．

4.1 WKB法

前章の経路積分はWKB法で評価した．したがって，演算子形式でもWKB法を用いる．そこでここ
では，1次元の演算子形式のWKB法についてまとめよう．
WKB法は，量子力学と古典力学との結びつきがよくわかる近似である．そのためには，まず波動関

数の形を

ψ(x, t) = exp

[
i

ℏ
S(x, t)

]
(4.1)

とおこう．ここで Sは作用の次元を持つ．これが Schrödinger方程式を満たすためには

−∂S
∂t

=
1

2m

(
∂S

∂x

)2

+ V (x)− iℏ
2m

∂2S

∂x2
(4.2)

とならなければならない．これは ℏ → 0の極限で，Hamilton-Jacobi方程式

−∂S
∂t

=
1

2m

(
∂S

∂x

)2

+ V (x) = H

(
x,
∂S

∂x
, t

)
(4.3)

になっており，量子力学から古典力学への移行を表す．
次に，波動関数 (4.1)が定常状態の Schrödinger方程式

− ℏ2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (4.4)

を満たす場合を考えよう．これより Sの満たすべき方程式(
∂S

∂x

)2

− iℏ
∂2S

∂x2
− 2m[E − V (x)] = 0 (4.5)

が導かれる．ここで ℏを小さいとして，Sを ℏ/iの冪で展開しよう．

S =
∞∑
n=0

Sn

(
ℏ
i

)n

= S0 + S1

(
ℏ
i

)
+ S2

(
ℏ
i

)2

+ · · · . (4.6)

WKB法とは，この展開でO(ℏ2)の項を無視する近似である．それでこの展開式を (4.5)に代入すると(
∂S0
∂x

)2

− 2m[E − V (x)] +

(
ℏ
i

)[
2

(
∂S0
∂x

)(
∂S1
∂x

)
+
∂2S0
∂x2

]
+O(ℏ2) = 0 (4.7)
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となる．ℏの各冪を等しくおくことで，S0, S1, · · · を順次決定していくことができる．今は ℏの 1次まで
とるので，上式から S0, S1の満たす方程式は(

∂S0
∂x

)2

= 2m[E − V (x)] = [p(x)]2, (4.8)

∂S1
∂x

= −1

2

S′′
0

S′
0

= −1

2

∂

∂x
log

(
∂S0
∂x

)
(4.9)

となることがわかる．よって，これを解いて

S0 = ±
∫

dxp(x), (4.10)

S1 = −1

2
log p(x) + C (4.11)

を得る．ただしCは積分定数であり，E > V (x)のときは p(x) =
√
2m[E − V (x)]として定義する．こ

れにより，波動関数 (4.1)の一般形は次のように近似できる．

ψ(x) =
C1√
p(x)

exp

[
i

ℏ

∫
dxp(x)

]
+

C2√
p(x)

exp

[
− i

ℏ

∫
dxp(x)

]
. (4.12)

また，E < V (x)のときは，p(x) = iρ(x) = i
√

2m[V (x)− E]として

ψ(x) =
D1√
ρ(x)

exp

[
−1

ℏ

∫
dxρ(x)

]
+

D2√
ρ(x)

exp

[
1

ℏ

∫
dxρ(x)

]
(4.13)

である．これらの波動関数に含まれている積分は，問題によって考える適当な領域で行うものとする．
これらWKB法の波動関数を使って，次節で前章のポテンシャルを考えていく．

4.2 WKB解の構成

前章で考えたポテンシャルをもう一度書くと，

V (q) =
ω2

8a2g2
(g2q2 − a2)2 (4.14)

である．また，このポテンシャルに関する Schrödinger方程式は，粒子の質量を 1とおいて

−ℏ2

2

d2

dq2
ψ(q) + V (q)ψ(q) = Eψ(q) (4.15)

となる．以前見たように，このポテンシャルは q ∼ ±a/g近傍で調和振動子型ポテンシャル

V (q) =
1

2
ω2

(
q ∓ a

g

)2

(4.16)

になることに注意しよう．(4.14)は偶関数ポテンシャルであるから，井戸の右側だけを考えれば十分で
ある．したがって今後は q ≧ 0であるとする．さらに，q = a/g近傍の Schrödinger方程式は

−ℏ2

2

d2

dq2
ψ(q) +

1

2
ω2

(
q − a

g

)2

ψ(q) = Eψ(q) (4.17)

となっている．
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今，前節の議論を元にすれば，0 ≦ q < a/gの範囲における (4.15)のWKB解は次のように書ける．

ψ(q) =
1√
ρ(q)

exp

[
−1

ℏ

∫ q

0
dq′ρ(q′)

]
+

1√
ρ(q)

exp

[
1

ℏ

∫ q

0
dq′ρ(q′)

]
. (4.18)

ただし，
ρ(q) =

√
2[V (q)− E] (4.19)

である．前章と同様に基底エネルギーを考えるとき，gが十分小さくそのエネルギーは調和振動子の基
底エネルギー ℏω/2から大きくずれないとすると，E ∼ O(ℏ)であり，ℏも十分小さいので，

√
ρ(q)の中

ではEを無視し，指数の中ではEの 1次まで保持する．すると

ψ(q) ∼=
1

(2V )1/4
exp

[
−1

ℏ

∫ q

0
dq′
(√

2V − E√
2V

)]
+

1

(2V )1/4
exp

[
1

ℏ

∫ q

0
dq′
(√

2V − E√
2V

)]
(4.20)

となる．前章でも見たように，この系における古典的な全エネルギーはゼロなので，古典解 1に対して

E =
1

2

(
dq

dt

)2

+ V (q) = −1

2

(
dq

dτ

)2

+ V (q) = 0 (4.21)

がわかる．ここでも，虚時間 τ = itを用いた．よって，古典作用は

S0 =

∫
dτ q̇2(τ) =

∫ a/g

−a/g
dqq̇ =

∫ a/g

−a/g
dq

√
2V = 2

∫ a/g

0
dq

√
2V (4.22)

と書ける．これ 2を使えば，(4.20)の指数の中の第 1項について∫ q

0
dq′

√
2V =

∫ a/g

0
dq′

√
2V +

∫ q

a/g
dq′

√
2V

=
1

2
S0 +

∫ q

a/g
dq′ω

∣∣∣∣ag − q′
∣∣∣∣

=
1

2
S0 −

1

2
ω

(
a

g
− q

)2

(4.23)

を得る．ここで，後半の積分は q ≲ a/gとしてポテンシャルを (4.16)で近似した．(4.20)の指数の中の
第 2項については ∫ q

0
dq′

1√
2V

=
2ag

ω

∫ q<a/g

0

dq′

|(a/g − q′)(a/g + q′)|

=
1

ω

∫ q

0
dq′
(

1

a/g − q′
+

1

a/g + q′

)
= − 1

ω
log

a/g − q

a/g + q
(4.24)

となる．さらに対数の中の分母を q = a/gのまわりで展開すると∫ q

0
dq′

1√
2V

= − 1

ω
log

[
g

2a

(
a

g
− q

)
+O

{(
a

g
− q

)2
}]

∼= − 1

ω
log

[
g

2a

(
a

g
− q

)]
(4.25)

1この解の範囲は，前章で見たように −a/g < q < a/g である．
2q̇ = dq/dτ と定義．
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となる．以上より，q ≲ a/gのWKB解は

ψ(q) =
1√

ω(a/g − q)
exp

[
1

ℏ

{
1

2
S0 −

1

2
ω

(
a

g
− q

)2

+
E

ω
log

(
g

2a

(
a

g
− q

))}]

− 1√
ω(a/g − q)

exp

[
−1

ℏ

{
1

2
S0 −

1

2
ω

(
a

g
− q

)2

+
E

ω
log

(
g

2a

(
a

g
− q

))}]
(4.26)

と求まる．エネルギーのずれを前章と同様に ϵと書けば

E =
ℏω
2

+ ϵ (4.27)

である．これを使って (4.26)は次のように書き換えられる．

ψ(q) =
1√

ω(a/g − q)
eS0/2ℏ exp

[
− ω

2ℏ

(
a

g
− q

)2

+

(
1

2
+

ϵ

ℏω

)
log

{
g

2a

(
a

g
− q

)}]

+
1√

ω(a/g − q)
e−S0/2ℏ exp

[
ω

2ℏ

(
a

g
− q

)2

−
(
1

2
+

ϵ

ℏω

)
log

{
g

2a

(
a

g
− q

)}]

∼=

{√
g

2aω
eS0/2ℏ exp

[
− ω

2ℏ

(
a

g
− q

)2
]
+

1

a/g − q

√
2a

gω
e−S0/2ℏ exp

[
ω

2ℏ

(
a

g
− q

)2
]}

{1 +O(ϵ)}.

(4.28)

4.3 逐次近似による解の構成

次に，ϵと ℏが小さいということから逐次近似を使って解を構成してみよう．ϵ = 0で，(4.17)の解は

ψ1(q) = exp

[
− ω

2ℏ

(
a

g
− q

)2
]

(4.29)

である．もちろん，(4.17)は 2階の微分方程式なので，独立な解がもう 1つ存在し，それは初等関数で
は書けないが，|a/g − q| ≫

√
ℏ/ωの近似では

ϕ1(q) ∼=
1

a/g − q

√
ℏ
ω
exp

[
ω

2ℏ

(
a

g
− q

)2
]

(4.30)

と書ける．
証明: 基底エネルギーE = ℏω/2に対する方程式 (4.17)で，

ξ =

√
ω

ℏ

(
q − a

g

)
(4.31)

とおくと，|ξ| ≫ 1であり，方程式は

d2ψ

dξ2
+ (1− ξ2)ψ = 0 (4.32)

と変形できる．この式に

ϕ1(q) ∼=
1

a/g − q

√
ℏ
ω
exp

[
ω

2ℏ

(
a

g
− q

)2
]
= −1

ξ
eξ

2/2 (4.33)
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を代入すると

d2ϕ1
dξ2

+ (1− ξ2)ϕ1 =
eξ

2/2

ξ

(
− 2

ξ2
+ 1− ξ2 − 1 + ξ2

)
=
eξ

2/2

ξ
×O(ξ−2) ∼= 0 (4.34)

となる．よって，ϕ1(q)は |a/g − q| ≫
√
ℏ/ωで近似的に方程式 (4.17)を満たす．(証明終)

さて，解 {ψ1, ϕ1}に対するロンスキアンW は

W = ψ1
dϕ1
dq

− ϕ1
dψ1

dq

= −2

√
ω

ℏ
+

1

(a/g − q)2

√
ℏ
ω

=

√
ω

ℏ

(
−2 +

ℏ
ω

1

(a/g − q)2

)
∼= −2

√
ω

ℏ
(4.35)

と計算される．したがって，方程式 (4.15)の解も q = a/g近傍で ψ1, ϕ1のようになると考えられるので，
(4.15)を変形した式 (

− d2

dq2
+

2V (q)

ℏ2
− ω

ℏ

)
ψ(q) =

2ϵ

ℏ2
ψ(q) (4.36)

の左辺に対するGreen関数は近似的に

G(q, q′) =
1

W

{
θ(q − q′)ψ1(q)ϕ1(q

′) + θ(q′ − q)ψ1(q
′)ϕ1(q)

}
= −1

2

√
ℏ
ω

{
θ(q − q′)ψ1(q)ϕ1(q

′) + θ(q′ − q)ψ1(q
′)ϕ1(q)

}
(4.37)

と定義できる．これらは 3.5節の議論を元にしている．すると，方程式 (4.15)の解は逐次近似で次のよ
うに書ける．

ψ(q) = ψ1(q) +

∫
dq′G(q, q′)

2ϵ

ℏ2
ψ(q′). (4.38)

前節で考えたWKB解と整合するためには q < a/gであって，すると a/g − q ≫
√
ℏ/ω．つまり qは負

の無限大の方向に十分に小さくなくてはならず，(4.34)の積分全体にわたって q′ > qとできる．ゆえに
逐次近似の 1次で

ψ(q) = ψ1(q) +

∫ ∞

−∞
dq′

(
−1

2

√
ℏ
ω
ψ1(q

′)ϕ1(q)

)
2ϵ

ℏ2
ψ1(q

′)

= ψ1(q)−
ϵ

ℏ2

√
ℏ
ω
ϕ1(q)

∫ ∞

−∞
dq′ψ2

1(q
′)

= ψ1(q)−
ϵ
√
π

ℏω
ϕ1(q)

= exp

[
− ω

2ℏ

(
a

g
− q

)2
]
− ϵ

ℏω

√
πℏ
ω

1

a/g − q
exp

[
ω

2ℏ

(
a

g
− q

)2
]

(4.39)

となる．これで逐次近似で解を構成することができた．
(4.28)と (4.39)は両方基底状態を表す解なので，比例しなければならない．第 1項を比較すればその

比例係数がわかり， √
g

2aω
eS0/2ℏ (4.40)
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となる．したがって第 2項を比較することで ϵが求まる．

−
√

g

2aω
eS0/2ℏ ϵ

ℏω

√
πℏ
ω

=

√
2a

gω
e−S0/2ℏ

⇐⇒ ϵ = −2aω

g

√
ℏω
π
e−S0/ℏ. (4.41)

これは経路積分法で求めた結果 (3.152)と一致する．
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第5章 まとめ

今回の計算により，具体的な例ではあるが，経路積分法と演算子法が改めて等価であることが示され
た．経路積分は冒頭でも述べた通り，数学的な定義がまだ不明確ではあるが，しかし演算子法との一致
は，その妥当性を示しているとも言える．そのため，物理で扱う分には，当面の間，数学的な定義の問題
は棚上げしても差し支えないだろう．経路積分法は，演算子を伴わない面や，古典系との対応が見やす
いなど，演算子法に比べて優れている面もたくさんあり，多くの研究分野で盛んに用いられている．し
たがって，これからの研究でも重要な研究分野であることは間違いないと思われる．ここでの計算は研
究で扱われるものに比べて非常に基本的なものではあるが，経路積分の練習問題としては十分なもので
あり，有意義な研究が行えたと考える．

45



付 録A 波動方程式(3.84)の厳密解を用いた方法

波動方程式 (3.84)を厳密に解いて，(3.86)で定義されている F±(E) = F (E)を直接求めることがで
きる．この方法でも，F ′(0)を計算でき，エネルギーのずれ (3.152)を導出できる．ここでは，すでに
∆(E) = F (E)は示されている前提で議論を進める．
解くべき方程式をもう一度書くと，[

− ∂2

∂τ2
+
ω2

2

(
3 tanh2

ωτ

2
− 1
)]
ψ(τ) = Eψ(τ) (A.1)

である．両辺を ω2で割ると，[
− ∂2

∂(ωτ)2
+

1

2

(
3 tanh2

ωτ

2
− 1
)]
ψ =

E

ω2
ψ ≡ µψ (A.2)

となる．そこで，tanh2(ωτ/2)を指数関数で書き，ωτ = θとおくと[
− ∂2

∂θ2
− 4eθ − e2θ − 1

(eθ + 1)2

]
ψ = µψ (A.3)

と変形できる．次に，変数変換 eθ = xを施せば，[
x2

d2

dx2
+ x

d

dx
+

4x− x2 − 1

(x+ 1)2
+ µ

]
ψ = 0 (A.4)

が得られる．
ここで，ゼロ固有値の解 (3.56)を思い出そう．この解を，余計な因子は無視して具体的に書けば

ψ0(τ) ∼
1

cosh2(ωτ/2)
∼ eωτ

(eωτ + 1)2
=

x

(x+ 1)2
(A.5)

である．それで ψを，
ψ =

x

(x+ 1)2
ϕ (A.6)

と分離し，方程式 (A.4)に代入する．すると，

x2
d2ϕ

dx2
− x(x− 3)

x+ 1

dϕ

dx
+ µϕ = 0 (A.7)

が得られる．これは次のように級数展開することで解ける．

ϕ = xγ
∞∑
n=0

anx
n =

∞∑
n=0

anx
n+γ . (A.8)

(A.7)に (x+ 1)を掛けた式にこの展開を代入して整理すると

(γ2 + 2γ + µ) +

∞∑
n=0

[{(n+ γ + 1)(n+ γ + 3) + µ} an+1 + {(n+ γ)(n+ γ − 2) + µ} an]xn+γ+1 = 0

(A.9)
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となる．上式は項別にゼロにならなければならないので，

γ2 + 2γ + µ = 0, (A.10)

an+1 = − (n+ γ)(n+ γ − 2) + µ

(n+ γ + 1)(n+ γ + 3) + µ
an (A.11)

という式が得られる．
まず (A.10)を γについて解くと，

γ = −1±
√
1− µ ≡ γ± (A.12)

となる．したがって，γの根号の前の符号の違いにより，独立な 2種類の解が得られることになる．そ
れぞれの解について，an → a±n とおいて展開係数を区別することにする．この記法で，(A.11)の漸化式
を順に解いていくと

a±1 =
4(
√
1− µ∓ 1)

2
√
1− µ± 1

a±0 , (A.13)

a±2 =
(2
√
1− µ∓ 1)(

√
1− µ∓ 1)

(2
√
1− µ± 1)(

√
1− µ± 1)

a±0 , (A.14)

a±n = 0, n ≧ 3 (A.15)

となることがわかる．これにより ϕは γの部分を除けば xの 2次の項までしか存在しない．この結果を
まとめると，a±0 を任意定数 c1, c2に置き換えて，ϕは

ϕ(x) = c1

[
(2
√
1− µ+ 1)(

√
1− µ+ 1)

(2
√
1− µ− 1)(

√
1− µ− 1)

x2 +
4(
√
1− µ+ 1)

2
√
1− µ− 1

x+ 1

]
x−

√
1−µ

x

+ c2

[
(2
√
1− µ− 1)(

√
1− µ− 1)

(2
√
1− µ+ 1)(

√
1− µ+ 1)

x2 +
4(
√
1− µ− 1)

2
√
1− µ+ 1

x+ 1

]
x
√
1−µ

x
(A.16)

となる．
以上より ψは，変数を τ に戻して

ψ(τ) = c1

[
(2
√
ω2 − E + ω)(

√
ω2 − E + ω)

(2
√
ω2 − E − ω)(

√
ω2 − E − ω)

e2ωτ +
4(
√
ω2 − E + ω)

2
√
ω2 − E − ω

eωτ + 1

]
e−

√
ω2−Eτ

(eωτ + 1)2

+ c2

[
(2
√
ω2 − E − ω)(

√
ω2 − E − ω)

(2
√
ω2 − E + ω)(

√
ω2 − E + ω)

e2ωτ +
4(
√
ω2 − E − ω)

2
√
ω2 − E + ω

eωτ + 1

]
e
√
ω2−Eτ

(eωτ + 1)2
(A.17)

≡ c1f1 + c2f2 (A.18)

と求まる．最後に，境界条件を考慮して F を導出していく．
境界条件 (3.85)を，ω2 > Eの場合に書き換える．まず kの定義から

k = i
√
ω2 − E (A.19)

であり，それゆえ
ikτ = −

√
ω2 − Eτ (A.20)

である．よって，(3.85)は
lim

τ→±∞

[
f±(τ, E)e±

√
ω2−Eτ

]
= 1 (A.21)
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と書き換えることができる．同様に (3.86)は

lim
τ→∓∞

f±(τ, E) = e±
√
ω2−EτA±(E) + e∓

√
ω2−EτF±(E) (A.22)

と書き換えられる．例として f+を考えよう．(A.18)と同様に，

f+ = c1f1 + c2f2 (A.23)

とおくと，条件 (A.21)を満たすためには

c1 =
(2
√
ω2 − E − ω)(

√
ω2 − E − ω)

(2
√
ω2 − E + ω)(

√
ω2 − E + ω)

, c2 = 0 (A.24)

でなければならないことがわかる．この時点で f+は

f+(τ, E) =

[
e2ωτ +

4(
√
ω2 − E − ω)

2
√
ω2 − E + ω

eωτ +
(2
√
ω2 − E − ω)(

√
ω2 − E − ω)

(2
√
ω2 − E + ω)(

√
ω2 − E + ω)

]
e−

√
ω2−Eτ

(eωτ + 1)2
(A.25)

となっている．それで f+の τ → −∞極限を考えると

lim
τ→−∞

f+(τ, E) =
(2
√
ω2 − E − ω)(

√
ω2 − E − ω)

(2
√
ω2 − E + ω)(

√
ω2 − E + ω)

e−
√
ω2−Eτ (A.26)

となる．よって，条件 (A.22)と比較すれば

F+(E) =
(2
√
ω2 − E − ω)(

√
ω2 − E − ω)

(2
√
ω2 − E + ω)(

√
ω2 − E + ω)

(A.27)

を得る．f−でも同様のことを行えば，上式と等しい F−を得る．以上から

F (E) =
(2
√
ω2 − E − ω)(

√
ω2 − E − ω)

(2
√
ω2 − E + ω)(

√
ω2 − E + ω)

(A.28)

が言える．
この F をEで微分してE = 0とおくと

F ′(E = 0) = − 3ω(ω2 − E)

(2
√
ω2 − E + ω)2(

√
ω2 − E + ω)2

√
ω2 − E

∣∣∣∣
E=0

= − 1

12ω2
(A.29)

となる．これを (3.150)と比較するため，古典作用 S0の値を評価する．(4.22)の V に (4.14)のポテン
シャルの形を入れて計算すれば

S0 = 2

∫ a/g

0
dq

√
2V

= 2

∫ a/g

0
dq

ω

2ag
|g2q2 − a2|

= − ω

ag

∫ a/g

0
dq(g2q2 − a2) =

2a2ω

3g2
(A.30)

となることがわかる．これを用いて，(A.29)は

F ′(0) = − 1

12ω2
· 3g2

2a2ω
· S0 = − g2

8a2ω3
S0 (A.31)

となる．これは (3.150)と一致している．ゆえに，直接 (3.84)を解くことでもエネルギーのずれ (3.152)

を求められることが示された．
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